Pyevolve

Pyevolve, Python

Pyevolve benchmark on different Python flavors

So I did a comparative of Pyevolve GP/GA core in different Python interpreters. I’ve used my Pentium Core 2 Duo (E4500 @ 2.20GHz, 1GB RAM), using Ubuntu 9.04 and Windows XP SP3 just for IronPython 2.6.1 (IronPython doesn’t run with Mono, so I used the win xp with .net 2.0).

The interpreters used were:

Unladen Swallow 2009Q2

I tried using 2009Q3 (the currently main trunk), but I think it’s unstable yet, cause it was more slow than 2009Q2, so I used 2009Q2; I compiled it with GCC 4.3.3 just using the default configure parameters (./configure).

CPython 2.6.2

I used the default CPython package of Ubuntu 9.04.

CPython 2.5.4

I used the default CPython package of Ubuntu 9.04 too, the python2.5 package.

PyPy 1.1.0 (svn:r68612)

I used the last svn version of the repository, the release 68612. My Pentium Core 2 Duo had only 1GB of RAM, and the PyPy translation process eats more RAM than Java (sorry for the joke), so I used a notebook with 3GB of RAM to create the pypy-c, what took 1 hour (I used –opt=3) and a beautiful ascii Mandelbrot fractal !

Jython 2.5.1

I used the default installer from the Jython project site. I used the Sun JRE 1.6.0_16.

IronPython 2.6.10920.0

I’ve used the 2.6 RC1 available at IronPython project site with MS .NET 2.0.

To test the GA core I’ve used this source-code (a simple sphere function):

from pyevolve import G1DList
from pyevolve import Mutators, Initializators
from pyevolve import GSimpleGA, Consts

# This is the Sphere Function
def sphere(xlist):
   total = 0
   for i in xlist:
      total += i**2
   return total

def run_main():
   genome = G1DList.G1DList(140)
   genome.setParams(rangemin=-5.12, rangemax=5.13)
   genome.initializator.set(Initializators.G1DListInitializatorReal)
   genome.mutator.set(Mutators.G1DListMutatorRealGaussian)
   genome.evaluator.set(sphere)

   ga = GSimpleGA.GSimpleGA(genome, seed=666)
   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(1500)
   ga.setMutationRate(0.01)
   ga.evolve(freq_stats=500)

   best = ga.bestIndividual()

if __name__ == "__main__":
   run_main()

And to test the GP core, I’ve used this source-code (a simple symbolic regression):

from pyevolve import GTree
from pyevolve import Mutators
from pyevolve import GSimpleGA, Consts, Util
import math

rmse_accum = Util.ErrorAccumulator()

def gp_add(a, b): return a+b
def gp_sub(a, b): return a-b
def gp_mul(a, b): return a*b
def gp_sqrt(a):   return math.sqrt(abs(a))

def eval_func(chromosome):
   global rmse_accum
   rmse_accum.reset()
   code_comp = chromosome.getCompiledCode()

   for a in xrange(0, 10):
      for b in xrange(0, 10):
         evaluated     = eval(code_comp)
         target        = math.sqrt((a*a)+(b*b))
         rmse_accum   += (target, evaluated)
   return rmse_accum.getRMSE()

def main_run():
   genome = GTree.GTreeGP()
   genome.setParams(max_depth=4, method="ramped")
   genome.evaluator += eval_func
   genome.mutator.set(Mutators.GTreeGPMutatorSubtree)

   ga = GSimpleGA.GSimpleGA(genome, seed=666)
   ga.setParams(gp_terminals       = ['a', 'b'],
                gp_function_prefix = "gp")

   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(40)
   ga.setCrossoverRate(1.0)
   ga.setMutationRate(0.08)
   ga.setPopulationSize(800)

   ga(freq_stats=10)
   best = ga.bestIndividual()

if __name__ == "__main__":
   main_run()

UPDATE 19/08: the x-axis is measured in “seconds“, and the y-axis is the python flavor;

The results are are described in the graph below:

pyevolve_pyvmsAs we can see, Unladen Swallow 2009Q2 did a little better performance than CPython 2.6.2, but Jython and PyPy (experimental) were left behind in that scenario, even behind IronPython 2.6.1.

genetic programming, Pyevolve, Python

Successful pyevolve multiprocessing speedup for Genetic Programming

As we know, Genetic Programming usually requires intensive processing power for the fitness functions and tree manipulations (in crossover operations), and this fact can be a huge problem when using a pure Python approach like Pyevolve. So, to overcome this situation, I’ve used the Python multiprocessing features to implement a parallel fitness evaluation approach in Pyevolve and I was surprised by the super linear speedup I got for a cpu bound fitness function used to do the symbolic regression of the Pythagoras theorem: c = \sqrt{a^2 + b^2}. I’ve used the same seed for the GP, so it has consumed nearly the same cpu resources for both test categories. Here are the results I obtained:

pyevolve_multiprocessing

The first fitness landscape I’ve used had 2.500 points and the later had a fitness landscape of 6.400 points, here is the source code I’ve used (you just need to turn on the multiprocessing option using the setMultiProcessing method, so Pyevolve will use multiprocessing when you have more than one single core, you can enable the logging feature to check what’s going on behind the scenes):

from pyevolve import *
import math

rmse_accum = Util.ErrorAccumulator()

def gp_add(a, b): return a+b
def gp_sub(a, b): return a-b
def gp_mul(a, b): return a*b
def gp_sqrt(a):   return math.sqrt(abs(a))

def eval_func(chromosome):
   global rmse_accum
   rmse_accum.reset()
   code_comp = chromosome.getCompiledCode()

   for a in xrange(0, 80):
      for b in xrange(0, 80):
         evaluated     = eval(code_comp)
         target        = math.sqrt((a*a)+(b*b))
         rmse_accum   += (target, evaluated)
   return rmse_accum.getRMSE()

def main_run():
   genome = GTree.GTreeGP()
   genome.setParams(max_depth=4, method="ramped")
   genome.evaluator += eval_func
   genome.mutator.set(Mutators.GTreeGPMutatorSubtree)

   ga = GSimpleGA.GSimpleGA(genome, seed=666)
   ga.setParams(gp_terminals       = ['a', 'b'],
                gp_function_prefix = "gp")

   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(20)
   ga.setCrossoverRate(1.0)
   ga.setMutationRate(0.08)
   ga.setPopulationSize(800)
   ga.setMultiProcessing(True)

   ga(freq_stats=5)
   best = ga.bestIndividual()

if __name__ == "__main__":
   main_run()

As you can see, the population size was 800 individuals with a 8% mutation rate and a 100% crossover rate for a simple 20 generations evolution. Of course you don’t need so many points in the fitness landscape, I’ve used 2.500+ points to create a cpu intensive fitness function, otherwise, the speedup can be less than 1.0 due the communication overhead between the processes. For the first case (2.500 points fitness landscape) I’ve got a 3.33x speedup and for the last case (6.400 points fitness landscape) I’ve got a 3.28x speedup. The tests were executed in a 2 cores pc (Intel Core 2 Duo).

Genetic Algorithms, Pyevolve, Python

n-queens problem using Pyevolve

Last night I’ve read a post on Reddit written by Matthew Rollings showing a code in Python to solve Eight Queens puzzle using EA. So I decided to implement it in Python again but this time using Pyevolve, here is the code:

from pyevolve import *
from random import shuffle

BOARD_SIZE = 64

def queens_eval(genome):
   collisions = 0
   for i in xrange(0, BOARD_SIZE):
      if i not in genome: return 0
   for i in xrange(0, BOARD_SIZE):
      col = False
      for j in xrange(0, BOARD_SIZE):
         if (i != j) and (abs(i-j) == abs(genome[j]-genome[i])):
            col = True
      if col == True: collisions +=1
   return BOARD_SIZE-collisions

def queens_init(genome, **args):
   genome.genomeList = range(0, BOARD_SIZE)
   shuffle(genome.genomeList)

def run_main():
   genome = G1DList.G1DList(BOARD_SIZE)
   genome.setParams(bestrawscore=BOARD_SIZE, rounddecimal=2)
   genome.initializator.set(queens_init)
   genome.mutator.set(Mutators.G1DListMutatorSwap)
   genome.crossover.set(Crossovers.G1DListCrossoverCutCrossfill)
   genome.evaluator.set(queens_eval)

   ga = GSimpleGA.GSimpleGA(genome)
   ga.terminationCriteria.set(GSimpleGA.RawScoreCriteria)
   ga.setMinimax(Consts.minimaxType["maximize"])

   ga.setPopulationSize(100)
   ga.setGenerations(5000)
   ga.setMutationRate(0.02)
   ga.setCrossoverRate(1.0)

   # This DBAdapter is to create graphs later, it'll store statistics in
   # a SQLite db file
   sqlite_adapter = DBAdapters.DBSQLite(identify="queens")
   ga.setDBAdapter(sqlite_adapter)

   ga.evolve(freq_stats=10)

   best = ga.bestIndividual()
   print best
   print "\nBest individual score: %.2f\n" % (best.score,)

if __name__ == "__main__":
   run_main()

It tooks 49 generations to solve a 64×64 (4.096 chess squares) chessboard, here is the output:

Gen. 0 (0.00%): Max/Min/Avg Fitness(Raw) [20.83(27.00)/13.63(7.00)/17.36(17.36)]
Gen. 10 (0.20%): Max/Min/Avg Fitness(Raw) [55.10(50.00)/39.35(43.00)/45.92(45.92)]
Gen. 20 (0.40%): Max/Min/Avg Fitness(Raw) [52.51(55.00)/28.37(24.00)/43.76(43.76)]
Gen. 30 (0.60%): Max/Min/Avg Fitness(Raw) [67.45(62.00)/51.92(54.00)/56.21(56.21)]
Gen. 40 (0.80%): Max/Min/Avg Fitness(Raw) [65.50(62.00)/19.89(31.00)/54.58(54.58)]

        Evolution stopped by Termination Criteria function !

Gen. 49 (0.98%): Max/Min/Avg Fitness(Raw) [69.67(64.00)/54.03(56.00)/58.06(58.06)]
Total time elapsed: 39.141 seconds.

And here is the plots generated by the Graph Plot Tool of Pyevolve:

fig1

fig3

fig5

fig8

genetic programming, News, Pyevolve, Python, Time Waste

Approximating Pi number using Genetic Programming

pi

As many (or very few in the real life haha) people know, today is the Pi Approximation Day ! So it’s time to make a contribution to celebrate this funny day =)

My contribution is to use Python and Pyevolve to approximate Pi number using Genetic Programming approach. I’ve created the functions gp_add(+), gp_sub(-), gp_div(/), gp_mul(*) and gp_sqrt (square root) to use as non-terminals of the GP. The fitness function is very simple too, it simple returns the absolute difference between the Python math.pi and the evaluated individual. I’ve used also a population size of 1k individuals with max tree depth of 8 and the random ephemeral constants as random integers. The best approximation I’ve got while running the GP for about 8 minutes (40 generations) was 3.1416185511, best for 3 digits, you can improve it and let it run for more time to get better approximations.

Here is the formulae I’ve got with the GP (click to enlarge):

tree_pi

And here is the output of the script:

Best (0): 3.1577998365
        Error: 0.0162071829
Best (10): 3.1417973679
        Error: 0.0002047143
Best (20): 3.1417973679
        Error: 0.0002047143
Best (30): 3.1417973679
        Error: 0.0002047143
Best (40): 3.1416185511
        Error: 0.0000258975

- GenomeBase
        Score:                   0.000026
        Fitness:                 15751.020831

        Params:          {'max_depth': 8, 'method': 'ramped'}

        Slot [Evaluator] (Count: 1)
        Slot [Initializator] (Count: 1)
                Name: GTreeGPInitializator - Weight: 0.50
                Doc: This initializator accepts the follow parameters:

   *max_depth*
      The max depth of the tree

   *method*
      The method, accepts "grow" or "full"

   .. versionadded:: 0.6
      The *GTreeGPInitializator* function.

        Slot [Mutator] (Count: 1)
                Name: GTreeGPMutatorSubtree - Weight: 0.50
                Doc:  The mutator of GTreeGP, Subtree Mutator

   .. versionadded:: 0.6
      The *GTreeGPMutatorSubtree* function

        Slot [Crossover] (Count: 1)
                Name: GTreeGPCrossoverSinglePoint - Weight: 0.50

- GTree
        Height:                 8
        Nodes:                  21

GTreeNodeBase [Childs=1] - [gp_sqrt]
  GTreeNodeBase [Childs=2] - [gp_div]
    GTreeNodeBase [Childs=2] - [gp_add]
      GTreeNodeBase [Childs=0] - [26]
      GTreeNodeBase [Childs=2] - [gp_div]
        GTreeNodeBase [Childs=2] - [gp_mul]
          GTreeNodeBase [Childs=2] - [gp_add]
            GTreeNodeBase [Childs=2] - [gp_sub]
              GTreeNodeBase [Childs=0] - [34]
              GTreeNodeBase [Childs=2] - [gp_sub]
                GTreeNodeBase [Childs=0] - [44]
                GTreeNodeBase [Childs=0] - [1]
            GTreeNodeBase [Childs=2] - [gp_mul]
              GTreeNodeBase [Childs=0] - [49]
              GTreeNodeBase [Childs=0] - [43]
          GTreeNodeBase [Childs=1] - [gp_sqrt]
            GTreeNodeBase [Childs=0] - [18]
        GTreeNodeBase [Childs=0] - [16]
    GTreeNodeBase [Childs=2] - [gp_add]
      GTreeNodeBase [Childs=0] - [24]
      GTreeNodeBase [Childs=0] - [35]

- GTreeGP
        Expression: gp_sqrt(gp_div(gp_add(26,
gp_div(gp_mul(gp_add(gp_sub(34,
gp_sub(44, 1)), gp_mul(49, 43)), gp_sqrt(18)),
16)), gp_add(24, 35)))

And finally, here is the source code:

from __future__ import division
from pyevolve import *
import math

def gp_add(a, b): return a+b
def gp_sub(a, b): return a-b
def gp_div(a, b): return 1 if b==0 else a/b
def gp_mul(a, b): return a*b
def gp_sqrt(a):   return math.sqrt(abs(a))

def eval_func(chromosome):
   code_comp = chromosome.getCompiledCode()
   ret = eval(code_comp)
   return abs(math.pi - ret)

def step_callback(engine):
   gen = engine.getCurrentGeneration()
   if gen % 10 == 0:
      best = engine.bestIndividual()
      best_pi = eval(best.getCompiledCode())
      print "Best (%d): %.10f" % (gen, best_pi)
      print "\tError: %.10f" % (abs(math.pi - best_pi))

   return False

def main_run():
   genome = GTree.GTreeGP()

   genome.setParams(max_depth=8, method="ramped")
   genome.evaluator += eval_func

   ga = GSimpleGA.GSimpleGA(genome)
   ga.setParams(gp_terminals       = ['ephemeral:random.randint(1, 50)'],
                gp_function_prefix = "gp")

   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(50000)
   ga.setCrossoverRate(1.0)
   ga.setMutationRate(0.09)
   ga.setPopulationSize(1000)
   ga.stepCallback.set(step_callback)

   ga.evolve()
   best = ga.bestIndividual()
   best.writeDotImage("tree_pi.png")

   print best

if __name__ == "__main__":
   main_run()

If you are interested why today is the Pi Approximation day, see some resources:

Little Cartoon

Some Background History

Some Pi Approximations

genetic programming, Pyevolve, Python

Genetic Programming and Flex layouts

To show how Genetic Programming of Pyevolve can be flexible, I’ve done a simple example using Adobe Flex and Pyevolve, the example is just to show how to evolve some kind of Flex layouts, I’ve not implemented the fitness function, this example will just create a random Flex layout using MXML. So, here is the Pyevolve code of the example:

import random
from pyevolve import *

def gp_hbox(x, y):
   return "%s %s" % (x,y)

def gp_vbox(x, y):
   return "%s %s" % (x,y)

def gp_panel(x, y):
   return "%s %s" % (x,y)

def eval_func(chromosome):
   code_comp = chromosome.getCompiledCode()

   for a in xrange(0, 5):
      for b in xrange(0, 5):
         evaluated     = eval(code_comp)
   return random.randint(1,100)

def main_run():
   genome = GTree.GTreeGP()
   genome.setParams(max_depth=5, method="ramped")
   genome.evaluator += eval_func

   ga = GSimpleGA.GSimpleGA(genome)

   button     = repr("<mx:Button label='Button'/>")
   label      = repr("<mx:Label text='Label'/>")
   text_input = repr("<mx:TextInput width='50'/>")

   ga.setParams(gp_terminals       = [button, label, text_input],
                gp_function_prefix = "gp")
   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.evolve(freq_stats=5)
   print ga.bestIndividual()

if __name__ == "__main__":
   main_run()

As you can see, I’ve created the layout tags like HBox, VBox and Panel as functions of GP and the Button, Labe, TextInput as terminals of the GP, the result is very funny, it’s just a random layout, but you can use your imagination to create some nice and interesting fitness functions.

Here is the SWF generated from a random individual of the population:

I hope you enjoyed =)

genetic programming, Pyevolve, Python

Genetic Programming meets Python

I’m proud to announce that the new versions of Pyevolve will have Genetic Programming support; after some time fighting with these evil syntax trees, I think I have a very easy and flexible implementation of GP in Python. I was tired to see people giving up and trying to learn how to implement a simple GP using the hermetic libraries for C/C++ and Java (unfortunatelly I’m a Java web developer hehe).

The implementation is still under some tests and optimization, but it’s working nice, here is some details about it:

The implementation has been done in pure Python, so we still have many bonus from this, but unfortunatelly we lost some performance.

The GP core is very very flexible, because it compiles the GP Trees in Python bytecodes to speed the execution of the function. So, you can use even Python objects as terminals, or any possible Python expression. Any Python function can be used too, and you can use all power of Python to create those functions, which will be automatic detected by the framework using the name prefix =)

As you can see in the source-code, you don’t need to bind variables when calling the syntax tree of the individual, you simple use the “getCompiledCode” method which returns the Python compiled function ready to be executed.

Here is a source-code example:

from pyevolve import *
import math

error_accum = Util.ErrorAccumulator()

# This is the functions used by the GP core,
# Pyevolve will automatically detect them
# and the they number of arguments
def gp_add(a, b): return a+b
def gp_sub(a, b): return a-b
def gp_mul(a, b): return a*b
def gp_sqrt(a):   return math.sqrt(abs(a))

def eval_func(chromosome):
   global error_accum
   error_accum.reset()
   code_comp = chromosome.getCompiledCode()

   for a in xrange(0, 5):
      for b in xrange(0, 5):
         # The eval will execute a pre-compiled syntax tree
         # as a Python expression, and will automatically use
         # the "a" and "b" variables (the terminals defined)
         evaluated     = eval(code_comp)
         target        = math.sqrt((a*a)+(b*b))
         error_accum += (target, evaluated)
   return error_accum.getRMSE()

def main_run():
   genome = GTree.GTreeGP()
   genome.setParams(max_depth=5, method="ramped")
   genome.evaluator.set(eval_func)

   ga = GSimpleGA.GSimpleGA(genome)
   # This method will catch and use every function that
   # begins with "gp", but you can also add them manually.
   # The terminals are Python variables, you can use the
   # ephemeral random consts too, using ephemeral:random.randint(0,2)
   # for example.
   ga.setParams(gp_terminals       = ['a', 'b'],
                gp_function_prefix = "gp")
   # You can even use a function call as terminal, like "func()"
   # and Pyevolve will use the result of the call as terminal
   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(1000)
   ga.setMutationRate(0.08)
   ga.setCrossoverRate(1.0)
   ga.setPopulationSize(2000)
   ga.evolve(freq_stats=5)

   print ga.bestIndividual()

if __name__ == "__main__":
   main_run()

I’m very happy and testing the possibilities of this GP implementation in Python.

And of course, everything in Pyevolve can be visualized any time you want (click to enlarge):

ramped_small

ramped_big

The visualization is very flexible too, if you use Python decorators to set how functions will be graphical represented, you can have many interesting visualization patterns. If I change the function “gp_add” to:

@GTree.gpdec(representation="+", color="red")
def gp_add(a, b): return a+b

We’ll got the follow visualization (click to enlarge):

full

I hope you enjoyed it, I’m currently fixing some bugs, implementing new features, docs and preparing the next release of Pyevolve, which will take some time yet =)