Genetic Algorithms, Pyevolve, Python

n-queens problem using Pyevolve

Last night I’ve read a post on Reddit written by Matthew Rollings showing a code in Python to solve Eight Queens puzzle using EA. So I decided to implement it in Python again but this time using Pyevolve, here is the code:

from pyevolve import *
from random import shuffle

BOARD_SIZE = 64

def queens_eval(genome):
   collisions = 0
   for i in xrange(0, BOARD_SIZE):
      if i not in genome: return 0
   for i in xrange(0, BOARD_SIZE):
      col = False
      for j in xrange(0, BOARD_SIZE):
         if (i != j) and (abs(i-j) == abs(genome[j]-genome[i])):
            col = True
      if col == True: collisions +=1
   return BOARD_SIZE-collisions

def queens_init(genome, **args):
   genome.genomeList = range(0, BOARD_SIZE)
   shuffle(genome.genomeList)

def run_main():
   genome = G1DList.G1DList(BOARD_SIZE)
   genome.setParams(bestrawscore=BOARD_SIZE, rounddecimal=2)
   genome.initializator.set(queens_init)
   genome.mutator.set(Mutators.G1DListMutatorSwap)
   genome.crossover.set(Crossovers.G1DListCrossoverCutCrossfill)
   genome.evaluator.set(queens_eval)

   ga = GSimpleGA.GSimpleGA(genome)
   ga.terminationCriteria.set(GSimpleGA.RawScoreCriteria)
   ga.setMinimax(Consts.minimaxType["maximize"])

   ga.setPopulationSize(100)
   ga.setGenerations(5000)
   ga.setMutationRate(0.02)
   ga.setCrossoverRate(1.0)

   # This DBAdapter is to create graphs later, it'll store statistics in
   # a SQLite db file
   sqlite_adapter = DBAdapters.DBSQLite(identify="queens")
   ga.setDBAdapter(sqlite_adapter)

   ga.evolve(freq_stats=10)

   best = ga.bestIndividual()
   print best
   print "\nBest individual score: %.2f\n" % (best.score,)

if __name__ == "__main__":
   run_main()

It tooks 49 generations to solve a 64×64 (4.096 chess squares) chessboard, here is the output:

Gen. 0 (0.00%): Max/Min/Avg Fitness(Raw) [20.83(27.00)/13.63(7.00)/17.36(17.36)]
Gen. 10 (0.20%): Max/Min/Avg Fitness(Raw) [55.10(50.00)/39.35(43.00)/45.92(45.92)]
Gen. 20 (0.40%): Max/Min/Avg Fitness(Raw) [52.51(55.00)/28.37(24.00)/43.76(43.76)]
Gen. 30 (0.60%): Max/Min/Avg Fitness(Raw) [67.45(62.00)/51.92(54.00)/56.21(56.21)]
Gen. 40 (0.80%): Max/Min/Avg Fitness(Raw) [65.50(62.00)/19.89(31.00)/54.58(54.58)]

        Evolution stopped by Termination Criteria function !

Gen. 49 (0.98%): Max/Min/Avg Fitness(Raw) [69.67(64.00)/54.03(56.00)/58.06(58.06)]
Total time elapsed: 39.141 seconds.

And here is the plots generated by the Graph Plot Tool of Pyevolve:

fig1

fig3

fig5

fig8