Month: July 2009

java, Python

Jinja2 in a Java JSP

This is a simple trick possible using Jython; to call jinja2 template engine under JSP we instantiate the PythonInterpreter class of Jython, set some parameters in the interpreter and then call jinja2 to render a template and write to the Java “out” object.

To install Jython, just download the last stable version Jython 2.5 and then install it as “Standalone” version; the installer will create a simple jython.jar file under the installation directory, copy this package to your Java web project under the \WEB-INF\lib or where you put your web application libraries.

Later, copy the jinja2 module to the \build\classes.

Create a simple template under the WebContent\templates\template.html with contents below:

This is just a Jinja2 template test !

Parameter "p" = {{ request.getParameter("p") }}

Getting session attribute: {{ session.getAttribute("session_attribute") }}

Iterating over Java array:
    {% for user in users %}
  • {{ user }}
  • {% endfor %}

And now create a file called index.jsp in the root of the WebContent, with the contents:

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
    pageEncoding="ISO-8859-1"%>
<%@page import="org.python.util.PythonInterpreter" %>




Jinja2 Template under JSP


<%
	PythonInterpreter py = new PythonInterpreter();

	String[] users = {"User Number One", "User Number Two"};
	session.setAttribute("session_attribute", "Testing Session");
	
	py.set("out",     out);
	py.set("request", request);
	py.set("session", session);
	py.set("users",   users);
	py.set("context_path", application.getRealPath("/") + "templates");
		
	py.exec("from jinja2 import Environment, FileSystemLoader");
	py.exec("env = Environment(loader=FileSystemLoader(context_path))");
	py.exec("template = env.get_template('template.html')");
	py.exec("out.write(template.render(locals()))");
%>


The structure will be like this:

structure

And the output will be something like this:

out

genetic programming, News, Pyevolve, Python, Time Waste

Approximating Pi number using Genetic Programming

pi

As many (or very few in the real life haha) people know, today is the Pi Approximation Day ! So it’s time to make a contribution to celebrate this funny day =)

My contribution is to use Python and Pyevolve to approximate Pi number using Genetic Programming approach. I’ve created the functions gp_add(+), gp_sub(-), gp_div(/), gp_mul(*) and gp_sqrt (square root) to use as non-terminals of the GP. The fitness function is very simple too, it simple returns the absolute difference between the Python math.pi and the evaluated individual. I’ve used also a population size of 1k individuals with max tree depth of 8 and the random ephemeral constants as random integers. The best approximation I’ve got while running the GP for about 8 minutes (40 generations) was 3.1416185511, best for 3 digits, you can improve it and let it run for more time to get better approximations.

Here is the formulae I’ve got with the GP (click to enlarge):

tree_pi

And here is the output of the script:

Best (0): 3.1577998365
        Error: 0.0162071829
Best (10): 3.1417973679
        Error: 0.0002047143
Best (20): 3.1417973679
        Error: 0.0002047143
Best (30): 3.1417973679
        Error: 0.0002047143
Best (40): 3.1416185511
        Error: 0.0000258975

- GenomeBase
        Score:                   0.000026
        Fitness:                 15751.020831

        Params:          {'max_depth': 8, 'method': 'ramped'}

        Slot [Evaluator] (Count: 1)
        Slot [Initializator] (Count: 1)
                Name: GTreeGPInitializator - Weight: 0.50
                Doc: This initializator accepts the follow parameters:

   *max_depth*
      The max depth of the tree

   *method*
      The method, accepts "grow" or "full"

   .. versionadded:: 0.6
      The *GTreeGPInitializator* function.

        Slot [Mutator] (Count: 1)
                Name: GTreeGPMutatorSubtree - Weight: 0.50
                Doc:  The mutator of GTreeGP, Subtree Mutator

   .. versionadded:: 0.6
      The *GTreeGPMutatorSubtree* function

        Slot [Crossover] (Count: 1)
                Name: GTreeGPCrossoverSinglePoint - Weight: 0.50

- GTree
        Height:                 8
        Nodes:                  21

GTreeNodeBase [Childs=1] - [gp_sqrt]
  GTreeNodeBase [Childs=2] - [gp_div]
    GTreeNodeBase [Childs=2] - [gp_add]
      GTreeNodeBase [Childs=0] - [26]
      GTreeNodeBase [Childs=2] - [gp_div]
        GTreeNodeBase [Childs=2] - [gp_mul]
          GTreeNodeBase [Childs=2] - [gp_add]
            GTreeNodeBase [Childs=2] - [gp_sub]
              GTreeNodeBase [Childs=0] - [34]
              GTreeNodeBase [Childs=2] - [gp_sub]
                GTreeNodeBase [Childs=0] - [44]
                GTreeNodeBase [Childs=0] - [1]
            GTreeNodeBase [Childs=2] - [gp_mul]
              GTreeNodeBase [Childs=0] - [49]
              GTreeNodeBase [Childs=0] - [43]
          GTreeNodeBase [Childs=1] - [gp_sqrt]
            GTreeNodeBase [Childs=0] - [18]
        GTreeNodeBase [Childs=0] - [16]
    GTreeNodeBase [Childs=2] - [gp_add]
      GTreeNodeBase [Childs=0] - [24]
      GTreeNodeBase [Childs=0] - [35]

- GTreeGP
        Expression: gp_sqrt(gp_div(gp_add(26,
gp_div(gp_mul(gp_add(gp_sub(34,
gp_sub(44, 1)), gp_mul(49, 43)), gp_sqrt(18)),
16)), gp_add(24, 35)))

And finally, here is the source code:

from __future__ import division
from pyevolve import *
import math

def gp_add(a, b): return a+b
def gp_sub(a, b): return a-b
def gp_div(a, b): return 1 if b==0 else a/b
def gp_mul(a, b): return a*b
def gp_sqrt(a):   return math.sqrt(abs(a))

def eval_func(chromosome):
   code_comp = chromosome.getCompiledCode()
   ret = eval(code_comp)
   return abs(math.pi - ret)

def step_callback(engine):
   gen = engine.getCurrentGeneration()
   if gen % 10 == 0:
      best = engine.bestIndividual()
      best_pi = eval(best.getCompiledCode())
      print "Best (%d): %.10f" % (gen, best_pi)
      print "\tError: %.10f" % (abs(math.pi - best_pi))

   return False

def main_run():
   genome = GTree.GTreeGP()

   genome.setParams(max_depth=8, method="ramped")
   genome.evaluator += eval_func

   ga = GSimpleGA.GSimpleGA(genome)
   ga.setParams(gp_terminals       = ['ephemeral:random.randint(1, 50)'],
                gp_function_prefix = "gp")

   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(50000)
   ga.setCrossoverRate(1.0)
   ga.setMutationRate(0.09)
   ga.setPopulationSize(1000)
   ga.stepCallback.set(step_callback)

   ga.evolve()
   best = ga.bestIndividual()
   best.writeDotImage("tree_pi.png")

   print best

if __name__ == "__main__":
   main_run()

If you are interested why today is the Pi Approximation day, see some resources:

Little Cartoon

Some Background History

Some Pi Approximations