Time Waste

Genetic Algorithms, News, Pyevolve, Time Waste

Travelling Salesman on Sony PSP using Stackless Python + Pyevolve

This is my first PoC of the Travelling Salesman Problem on PSP, since I’ve installed the Pyevolve on the Sony PSP,  I can optimize any problem while using the graphical interface of PSP (in that problem I’m using the 2D functions to plot the cities and the path) to show results in real-time. Here is the video, the quality is very low, I’ve used my cellphone 🙂

Here is the source code I’ve used, the Pyevolve version of this example is the development version r166, which in the future will be the 0.6 final release (I’m working on many new features yet, so it will take time to release), however, this PoC should work on 0.5 release too:

import psp2d, pspos

WHITE_COLOR = psp2d.Color(255,255,255)
CLEAR_COLOR = psp2d.Color(0,0,0,255)
RED_COLOR   = psp2d.Color(255, 0, 0)

cm     = []
coords = []
CITIES = 20

pspos.setclocks(333,166)
psp_scr  = psp2d.Screen()
psp_font = psp2d.Font('font.png')
psp_scr.clear(CLEAR_COLOR)
psp_font.drawText(psp_scr, 0, 5, "Loading Pyevolve modules...")
psp_scr.swap()

from pyevolve import G1DList
from pyevolve import GSimpleGA
from pyevolve import GAllele
from pyevolve import Mutators
from pyevolve import Crossovers
from pyevolve import Consts

from random import shuffle as rand_shuffle, randint as rand_randint
from math import sqrt

def cartesian_matrix(coords):
   """ A distance matrix """
   matrix={}
   for i,(x1,y1) in enumerate(coords):
      for j,(x2,y2) in enumerate(coords):
         dx, dy = x1-x2, y1-y2
         dist=sqrt(dx*dx + dy*dy)
         matrix[i,j] = dist
   return matrix

def tour_length(matrix, tour):
   """ Returns the total length of the tour """
   total = 0
   for i in range(CITIES):
      j      = (i+1)%CITIES
      total += matrix[tour[i], tour[j]]
   return total

def write_tour_to_img(coords, tour):
   """ The function to plot the graph """
   psp_scr.clear(CLEAR_COLOR)
   for i in range(CITIES):
      j      = (i+1)%CITIES
      city_i = tour[i]
      city_j = tour[j]
      x1, y1 = coords[city_i]
      x2, y2 = coords[city_j]
      psp_scr.drawLine(int(x1), int(y1), int(x2), int(y2), WHITE_COLOR)
      psp_font.drawText(psp_scr, int(x1)+7, int(y1)-5, str(i))
      psp_scr.fillRect(int(x1), int(y1), 6, 6, RED_COLOR)

   psp_scr.swap()

def G1DListTSPInitializator(genome, **args):
   """ The initializator for the TSP """
   lst = [i for i in xrange(genome.getListSize())]
   rand_shuffle(lst)
   genome.genomeList = lst

def evolve_callback(ga_engine):
   """ Callback called every generation by Pyevolve """
   write_tour_to_img(coords, ga_engine.bestIndividual())
   return False

def main_run():
   global cm, coords

   width, height = psp_scr.size
   coords = [(rand_randint(0, width),rand_randint(0, height))
                 for i in xrange(CITIES)]
   cm     = cartesian_matrix(coords)

   setOfAlleles = GAllele.GAlleles(homogeneous=True)
   range_allele = GAllele.GAlleleRange(0, len(coords)-1)
   setOfAlleles.add(range_allele)

   genome = G1DList.G1DList(len(coords))
   genome.setParams(allele=setOfAlleles)

   genome.evaluator.set(lambda chromosome: tour_length(cm, chromosome))
   genome.mutator.set(Mutators.G1DListMutatorSwap)
   genome.crossover.set(Crossovers.G1DListCrossoverOX)
   genome.initializator.set(G1DListTSPInitializator)

   ga = GSimpleGA.GSimpleGA(genome)
   ga.setMinimax(Consts.minimaxType["minimize"])
   ga.setGenerations(300)
   ga.setPopulationSize(200)
   ga.setCrossoverRate(1.0)
   ga.setMutationRate(0.1)
   ga.stepCallback.set(evolve_callback)

   ga.evolve()

if __name__ == "__main__":
   main_run()
News, Python, Time Waste

Python: 3D real-time debugging and function call structure

Here is two videos of a small script (python and xmlrpc calls to ubigraph visualization server) created to show a 3D graph of  the function call structure of a python application, the first shows only the structure created while running the application and the next video shows a debugging-like tool, it changes the node color to red when the function is called, and the labels shows: function name, python file name and the line on the python file where the code is.

Update (26/02): download here the script source-code.

To use the script, start the Ubigraph visualization server and add the profile module to your python application, it will looks like this:

import prof3d

def run_main():
   # your code

if __name__ == "__main__":
   prof3d.profile_me()
   run_main()

News, Python, Time Waste

Twitter in 3D !

I was doing some tests on the Ubigraph dynamic graph visualization tool and I have this idea to use the Ubigraph tool to render 3D graphs of Twitter friends on real-time. Follows the video of the scripting utility I’ve created, it starts with a red node of your twitter and when you click, it shows your friends, when you click on your friends, it shows their  friends, and so on. I think it is interesting those social network graphs, when I got more time I’ll put more ideas on the pratice =)

Update (26/02): download here the script source-code.
To use it, you must install python-twitter, use the easy_install:

easy_install python-twitter

I’ve tested with Python 2.5, but it should works on 2.4 and 2.6 too.

Start the Ubigraph visualization server and run the script. The syntax for the script is like this:

python twitter3d.py -u username

You can get a help using:

python twitter3d.py –help

I'm starting a new course "Machine Learning: Foundations and Engineering" for 2024.