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DISCLAIMER

PyTorch development pace is so fast that no man ever
steps in PyTorch code twice, for it's not the same code
and he’s not the same man.

—Heraclitus, 500 BC
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TENSORS

Simply put, TENSORS are a generalization of vectors and matrices. In
PyTorch, they are a multi-dimensional matrix containing elements of
a single data type.
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Simply put, TENSORS are a generalization of vectors and matrices. In
PyTorch, they are a multi-dimensional matrix containing elements of
a single data type.

>>> import torch
>>> t = torch.tensor([[1., -1.], [1., -1.11)
>>> ¢
tensor([[ 1., -1.]

1., -1.1D
>>> t.dtype # They have a type
torch.float32
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torch.float32
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torch.Size([2, 21)
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TENSORS

Simply put, TENSORS are a generalization of vectors and matrices. In
PyTorch, they are a multi-dimensional matrix containing elements of
a single data type.

>>> import torch
>>> t = torch.tensor([[1., -1.], [1., -1.11)
>>> ¢
tensor([[ 1., -1.]

1., -1.1D
>>> t.dtype # They have a type
torch.float32

>>> t.shape # a shape
torch.Size([2, 21)

>>> t.device # and live in some device
device(type='cpu')
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heavy work is actually implemented in C++.

» In Python, the integration of C++ code is (usually) done using
what is called an extension;
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» PyTorch uses ATen, which is the foundational tensor operation
library on which all else is built;
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» To do automatic differentiation, PyTorch uses Autograd, which is
an augmentation on top of the ATen framework;
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TENSORS

» Although PyTorch has an elegant python first design, all PyTorch
heavy work is actually implemented in C++.

» In Python, the integration of C++ code is (usually) done using
what is called an extension;

» PyTorch uses ATen, which is the foundational tensor operation
library on which all else is built;

» To do automatic differentiation, PyTorch uses Autograd, which is
an augmentation on top of the ATen framework;
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typedef struct {
PyObject_HEAD
double ob_fval,;

} PyFloatObject;
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double ob_fval; struct _typeobject *ob_type;

} PyFloatObject; } PyObject;
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QUICK RECAP PYTHON OBJECTS

typedef struct { typedef struct _object {
PyObject_HEAD Py_ssize_t ob_refcnt;
double ob_fval; struct _typeobject *ob_type;
} PyFloatObject; } PyObject;
PyObject_HEAD b= Py _ssize_t ob_refcnt

double ob_fval struct _typeobject *ob_type
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QUICK RECAP PYTHON OBJECTS

struct THPVariable {
PyObject_HEAD;
c10: :MaybeOwned<at: :Tensor> cdata;
PyObject* backward_hooks = nullptr;
PyObject* post_accumulate_grad_hooks = nullptr;

The TH prefix is from TorcH, and P means Python.
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QUICK RECAP PYTHON OBJECTS

struct THPVariable {
PyObject_HEAD;
c10: :MaybeOwned<at: :Tensor> cdata;
PyObject* backward_hooks = nullptr;
PyObject* post_accumulate_grad_hooks = nullptr;

Ref Count =1
variable_a
HPVari |

PyObject_HEAD (w/ ref counter)
(object fields)
IIHHHHH!III
Ref Count =

The TH prefix is from TorcH, and P means Python.
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IN PYTHON, EVERYTHING IS AN OBJECT

>>> a = 300
>>> b 300
>>> a is b
False
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>>> a = 300
>>> b = 300
>>> a is b
False

>>> a = 200
>>> b = 200

>>> a is b
True
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IN PYTHON, EVERYTHING IS AN OBJECT

>>> a 300 Ref Count = 1

i PyObject_HEAD
>>> b = 300 (object fields)
>>> a is b

Ref Count =1 .

False “"  pyObject_ HEAD
(object fields)

>>> a = 200

>>> b =

>>> a is b

PyObject_HEAD

True / (object fields)

A typical Python program spend much of its time
allocating/deallocating integers. CPython then caches the small
integers.
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ZERO-COPYING TENSORS

It is very common to load tensors in numpy and convert them to
PyTorch, or vice-versa;
>>> np_array = np.ones((2,2))
>>> np_array
array([[1., 1.7,
(1., 1.1D

Underline after an operation means an in-place operation.
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It is very common to load tensors in numpy and convert them to
PyTorch, or vice-versa;
>>> np_array = np.ones((2,2))
>>> np_array
array([[1., 1.7,
(1., 1.1D
>>> torch_array = torch.tensor(np_array)
>>> torch_array
tensor ([[1., 1.1,
[1., 1.11, dtype=torch.float64)

Underline after an operation means an in-place operation.
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ZERO-COPYING TENSORS

It is very common to load tensors in numpy and convert them to
PyTorch, or vice-versa;
>>> np_array = np.ones((2,2))
>>> np_array
array([[1., 1.7,
(1., 1.1D
>>> torch_array = torch.tensor(np_array)
>>> torch_array
tensor ([[1., 1.1,
[1., 1.11, dtype=torch.float64)

>>> torch_array.add_(1.0)

Underline after an operation means an in-place operation.
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ZERO-COPYING TENSORS

It is very common to load tensors in numpy and convert them to
PyTorch, or vice-versa;

>>> np_array = np.ones((2,2))
>>> np_array
array([[1., 1.],

(1., 1.1

>>> torch_array = torch.tensor(np_array)
>>> torch_array
tensor ([[1., 1.1,

[1., 1.]1], dtype=torch.float64)

>>> torch_array.add_(1.0)
>>> np_array

array([[1., 1.],
(1., 1.1D

# array is intact, a copy was made

Underline after an operation means an in-place operation.
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» Now imagine that you have a batch of 128 images, 3 channels each
(RGB) and with size of 224x224;

Column

» This will yield a size in memory of ~ 74MB. We don’'t want to
duplicate memory (except when copying them to discrete GPUs
of course);
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ZERO-COPYING TENSORS

Let’s see now a slightly different code using the function
torch.from_numpy() this time:
>>> np_array
array([[1., 1.7,
(1., 1.1D

>>> torch_array = torch.from_numpy(np_array)
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ZERO-COPYING TENSORS

Let’s see now a slightly different code using the function
torch.from_numpy() this time:
>>> np_array
array([[1., 1.7,
(1., 1.1D

>>> torch_array = torch.from_numpy(np_array)
>>> torch_array.add_(1.0)
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ZERO-COPYING TENSORS

Let’s see now a slightly different code using the function
torch.from_numpy() this time:
>>> np_array
array([[1., 1.7,

(1., 1.1
>>> torch_array = torch.from_numpy(np_array)
>>> torch_array.add_(1.0)

>>> np_array
array([[2., 2.],
[2., 2.1
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ZERO-COPYING TENSORS

Let’s see now a slightly different code using the function
torch.from_numpy() this time:
>>> np_array
array([[1., 1.7,
(1., 1.1D
>>> torch_array = torch.from_numpy(np_array)
>>> torch_array.add_(1.0)
>>> np_array
array([[2., 2.],
(2., 2.1

The original numpy array was changed, because it used a zero-copy
operation.
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ZERO-COPYING TENSORS

Difference between in-place and standard operations might not be so
clear in some cases:
>>> np_array
array([[1., 1.7,
(1., 1.1D)

>>> torch_array = torch.from_numpy(np_array)
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ZERO-COPYING TENSORS

Difference between in-place and standard operations might not be so
clear in some cases:

>>> np_array
array([[1., 1.7,
(1., 1.1D)

>>> torch_array = torch.from_numpy(np_array)

>>> np_array = np_array + 1.0
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ZERO-COPYING TENSORS

Difference between in-place and standard operations might not be so
clear in some cases:
>>> np_array
array([[1., 1.7,
(1., 1.1D)

>>> torch_array = torch.from_numpy(np_array)
>>> np_array = np_array + 1.0

>>> torch_array
tensor([[1., 1.7,
[1., 1.]1]1, dtype=torch.float64)
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ZERO-COPYING TENSORS

Difference between in-place and standard operations might not be so
clear in some cases:

>>> np_array
array([[1., 1.7,
(1., 1.1D)

>>> torch_array = torch.from_numpy(np_array)
>>> np_array = np_array + 1.0
>>> torch_array
tensor([[1., 1.7,
[1., 1.]], dtype=torch.float64)
However, if you use np_array += 1.0, thatisan in-place operation

that will change torch_array memory.
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at::Tensor tensor_from_numpy(PyObject* obj, (omitted)) {

}

// some parts omitted for brevity
auto array = (PyArrayObject*)obj;
int ndim = PyArray_NDIM(array) ;
auto sizes = to_aten_shape(ndim, PyArray_DIMS(array));
auto strides = to_aten_shape(ndim, PyArray_STRIDES(array));
void* data_ptr = PyArray_DATA(array);
Py_INCREF (obj) ;
return at::lift_fresh(at::from_blob(
data_ptr, sizes, strides,
[obj] (void* data) {
pybindl1l::gil_scoped_acquire gil;
Py_DECREF (obj) ;
1,
at: :device (kCPU) .dtype (numpy_dtype_to_aten(PyArray_TYPE(array))

Pay attention to the reference counting using Py_INCREF () and the

callto at::from_blob() function.
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DATA POINTERS

data_pointer* = data_pointer*
(object fields) (object fields)

The tensor FloatTensor did a copy of the numpy array data
pointer and not of the contents. The reference is kept safe by the
Python reference counting mechanism.
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TENSOR STORAGE

The abstraction responsible for holding the data isn’t actually the
Tensor , but the Storage .
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The abstraction responsible for holding the data isn’t actually the
Tensor , but the Storage .

struct C10_API StorageImpl : public c10::intrusive_ptr_target {
/7 )
private:

/7 o)

DataPtr data_ptr_;

SymInt size_bytes_;

Allocator* allocator_;

/70D
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TENSOR STORAGE

The abstraction responsible for holding the data isn’t actually the
Tensor , but the Storage .

struct C10_API StorageImpl : public c10::intrusive_ptr_target {
/7 (L)

private:
/7 ()
DataPtr data_ptr_;
SymInt size_bytes_;
Allocator* allocator_;

/70D

» Holds a pointer to the raw data and contains information such as
the size and allocator;

» Storage is a dumb abstraction, there is no metadata telling us how
to interpret the data it holds;



TENSORS
oce

TENSOR STORAGE

» The Storage abstraction is very powerful because it decouples
the raw data and how we can interpret it;
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TENSOR STORAGE

» The Storage abstraction is very powerful because it decouples
the raw data and how we can interpret it;

» We can have multiple tensors sharing the same storage, but with
different interpretations, also called views, but without
duplicating memory:
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TENSOR STORAGE

>

>>>
>>>
>>>
>>>
>>>
True

The Storage abstraction is very powerful because it decouples
the raw data and how we can interpret it;

We can have multiple tensors sharing the same storage, but with
different interpretations, also called views, but without
duplicating memory:

x = torch.ones((2, 2))

x_view = x.view(4)

x_data = x.untyped_storage() .data_ptr()
x_view_data = x_view.untyped_storage() .data_ptr()
x_data == x_view_data
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TorcH ExPORT EXECUTORCE

TENSOR STORAGE

» The Storage abstraction is very powerful because it decouples
the raw data and how we can interpret it;

» We can have multiple tensors sharing the same storage, but with
different interpretations, also called views, but without
duplicating memory:

>>> x = torch.ones((2, 2))

>>> x_view = x.view(4)

>>> x_data = x.untyped_storage() .data_ptr()

>>> x_view_data = x_view.untyped_storage() .data_ptr()
>>> x_data == x_view_data

True

» x_view is a different view (interpretation) of the same data
present in the underlying storage that is shared between both
tensors.
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MEMORY ALLOCATORS (CPU/GPU)

» The tensor storage can be allocated either in the CPU memory or
GPU, therefore a mechanism is required to switch between these
different allocations:



MEMORY ALLOCATORS (CPU/GPU)

» The tensor storage can be allocated either in the CPU memory or
GPU, therefore a mechanism is required to switch between these
different allocations:

struct C10_API Allocator {
virtual ~Allocator() = default;
virtual DataPtr allocate(size_t n) const = 0;
virtual DeleterFnPtr raw_deleter() comnst {...}
void* raw_allocate(size_t n) {...}
void raw_deallocate(void* ptr) {...}
+;
» There are Allocator s that will use the GPU allocators such as
cudaMalloc() when the storage should be used for the GPU

or posix_memalign() POSIX functions for data in the CPU
memory.
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CUDA CACHING ALLOCATOR

PyTorch uses a CUDA caching allocator that maintains a cache of
allocations with the Block structure:
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CUDA CACHING ALLOCATOR

PyTorch uses a CUDA caching allocator that maintains a cache of
allocations with the Block structure:

struct Block {
int device; // gpu
cudaStream_t stream; // allocation stream
size_t size; // block size in bytes
BlockPool* pool{nullptrl}; // owning memory pool
void* ptr{nullptr}; // memory address

bool allocated{falsel}; // in-use flag

Block* prev{nullptr}; // prev block if split from
Block* next{nullptr}; // next block <f split from
/7 (L)

}

The torch.cuda.empty_cache() will release all unused blocks.
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THE BIG PICTURE

. S ...

Storage *storage —- DataPtr data_ptr
(object fields) Allocator *allocator
(object fields) — e
raw_allocate()

raw_deallocate()
(object fields)

» The Tensor hasa Storage which in turn has a pointer to the

raw data and to the Allocator to allocate memory according
to the destination device.

yTorch 2 internals - Christian S. Perone (202
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JIT - JUST-IN-TIME COMPILER

» PyTorch is eager by design, which means that it is easily hackable
to debug, inspect, etc;
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» PyTorch is eager by design, which means that it is easily hackable
to debug, inspect, etc;

» However, this poses problems for optimization and for
decoupling it from Python (the model itself is Python code);
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JIT - JUST-IN-TIME COMPILER

» PyTorch is eager by design, which means that it is easily hackable
to debug, inspect, etc;

» However, this poses problems for optimization and for
decoupling it from Python (the model itself is Python code);

» PyTorch 1.0 introduced torch.jit , which has two main
methods to convert a PyTorch model to a serializable and
optimizable format;

» TorchScript was also introduced as a statically-typed subset of
Python;
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JIT - JUST-IN-TIME COMPILER

Two very different worlds with their own requirements.

@ EAGER MODE . @ SCRIPT MODE
tracing

Prototype, debug, train, Optimization, other
experiment >> languages, deployment

<l> scripting ’
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def my_function(x):
if x.mean() > 1.0:
r = torch.tensor(1.0)
else:
r = torch.tensor(2.0)
return r

wristian S. Perone (202
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TRACING

def my_function(x):
if x.mean() > 1.0:
r = torch.tensor(1.0)
else:
r = torch.tensor(2.0)
return r

>>> ftrace = torch.jit.trace(my_function, (torch.ones(2, 2)))

wristian S. Perone (202
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TRACING

def my_function(x):

>>>

>>>

if x.mean() > 1.0:
r = torch.tensor(1.0)

else:
r = torch.tensor(2.0)
return r
ftrace = torch.jit.trace(my_function, (torch.ones(2, 2)))

ftrace.graph

graph(%x : Float(2, 2, strides=[2, 1], requires_grad=0, device=cpu)):

S g
%6
YA
YA
%9

YA

%12

Float(requires_grad=0, device=cpu) = prim::Constant[value={2}] ()

: Device = prim::Constant [value="cpu"] ()

int = prim::Constant [value=6] ()
bool = prim::Constant[value=0] ()

: bool = prim::Constant [value=0] ()
%10 :

NoneType = prim::Constant()
: Float(requires_grad=0, device=cpu) = aten::to(%5, %6, %7, %8, %9,
Float(requires_grad=0, device=cpu) = aten::detach(%11)

return (%12)

PyTorch 2 internals - Christian S. Perone (2023
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To call the JITed function, just call the forward() method:

>>> x = torch.ones(2, 2)
>>> ftrace.forward(x)
tensor(2.)




TRACING

To call the JITed function, just call the forward() method:

>>> x = torch.ones(2, 2)
>>> ftrace.forward(x)
tensor(2.)

However, tracing will not record any control-flow like if statements or
loops, it executes the code with the given context and creates the
graph. You can see this limitation below:

>>> x = torch.ones(2, 2).add_(1.0)
>>> ftrace.forward(x)
tensor(2.)

According to my_function() , result should have been 1.0. Tracing
also checks for differences between traced and Python function, but
what about Dropout ?
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SCRIPTING

Another alternative is to use scripting, where you can use decorators
such as @torch.jit.script:

Q@torch.jit.script
def my_function(x):
if bool(x.mean() > 1.0):
r =1
else:
r =2
return r
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SCRIPTING

>>> my_function.graph

graph(%x.1 : Tensor):

%2 : NoneType = prim::Constant()

%4 : float = prim::Constant[value=1.]()
%9 : int = prim::Constant[value=1] ()
%10 : int = prim::Constant[value=2] ()
%3 : Tensor = aten::mean(¥%x.1l, %2)

%5 : Tensor = aten::gt(%3, %4)

%7 : bool = aten::Bool(%5)

%r : int = prim::If (%7)

block0() :

-> (49

block1():

-> (%10)

return (%r)
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SCRIPTING

The my_function() isnowa torch.jit.ScriptFunction :

>>> type(my_function)
torch.jit.ScriptFunction
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SCRIPTING

The my_function() isnowa torch.jit.ScriptFunction:
>>> type(my_function)
torch.jit.ScriptFunction
When we check the results again:
>>> x = torch.ones(2, 2)

>>> my_function(x)
2
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SCRIPTING

The my_function() isnowa torch.jit.ScriptFunction:
>>> type(my_function)
torch.jit.ScriptFunction
When we check the results again:

>>> x = torch.ones(2, 2)
>>> my_function(x)
2

>>> x = torch.ones(2, 2).add_(1.0)
>>> my_function(x)
1

Control-flow logic was preserved !
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WHY TORCHSCRIPT ?

» The concept of having a well-defined Intermediate
Representation (IR) is very powerful, it's the main concept
behind LLVM platform as well;
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Representation (IR) is very powerful, it's the main concept
behind LLVM platform as well;

» This opens the door to:
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*» Use it in production with C++ (no GIL) or other languages;
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*» Capitalize on optimizations (whole program);



WHY TORCHSCRIPT ?

» The concept of having a well-defined Intermediate
Representation (IR) is very powerful, it's the main concept
behind LLVM platform as well;

» This opens the door to:
» Decouple the model (computationl graph) from Python runtime;

*» Use it in production with C++ (no GIL) or other languages;
*» Capitalize on optimizations (whole program);

*» Split the development world of hackable and easy to debug from
the world of putting these models in production and optimize
them.
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To build the IR, PyTorch takes leverage of the Python Abstract Syntax
Tree (AST) which is a tree representation of the syntactic structure of
the source code.

>>> ast_mod = ast.parse("print(l + 2)")
>>> astpretty.pprint(ast_mod.body[0], show_offsets=False)

Expr(
value=Call(
func=Name (id='print', ctx=Load()),
args=[

BinOp(
left=Num(n=1),
op=Add (),
right=Num(n=2),

),

] s
keywords=[],
),
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BuiLpiNnGg THE IR

print(1 + 2)

Expr
Call
/\
Name BinOp
/\/\
"print" Load Num Add Num




JIT
ooe

PyTorcH JIT PHASES

e RO Rlbe
or
55 0e m

Code
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OPTIMIZATIONS

Many optimizations can be used on the computational graph of the
model, such as Loop Unrolling:

for i.. i+= 1 for i.. i+= 4
for j.. for j..
code(i, j) code(i, j)

code(i+1, j)

code(i+2, j)

code(i+3, j)
remainder loop
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Also Peephole optimizations such as:

x.tO.t() =x
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OPTIMIZATIONS
Also Peephole optimizations such as:
x.t0.t0O =

Example:

def dumb_function(x):
return x.t().t()

>>> traced_fn = torch.jit.trace(dumb_function,
torch.ones(2,2))

>>> traced_fn.graph_for(torch.ones(2,2))

graph(%x : Tensor):

return (%x)
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OPTIMIZATIONS

Also Peephole optimizations such as:
x.t0.t0O =

Example:

def dumb_function(x):
return x.t().t()

>>> traced_fn = torch.jit.trace(dumb_function,
torch.ones(2,2))

>>> traced_fn.graph_for(torch.ones(2,2))

graph(%x : Tensor):

return (%x)

Other optimizations include Constant Propagation, Dead Code
Elimination (DCE), fusion, inlining, etc.
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SERIALIZATION

>>> resnet = torch.jit.trace(models.resnet18(),
. torch.rand(1, 3, 224, 224))
>>> resnet.save("resnet.pt")



JIT
o0

SERIALIZATION

>>> resnet = torch.jit.trace(models.resnet18(),

. torch.rand(1, 3, 224, 224))
>>> resnet.save("resnet.pt")
$ file resnet.pt

resnet.pt: Zip archive data
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SERIALIZATION

>>> resnet = torch.jit.trace(models.resnet18(),
. torch.rand(1, 3, 224, 224))
>>> resnet.save("resnet.pt")

$ file resnet.pt
resnet.pt: Zip archive data

$ unzip resnet.pt

Archive: resnet.pt

extracting: resnet/version

extracting: resnet/code/__torch__/torchvision/models/resne
extracting: resnet/data/0

...
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SERIALIZATION

code/resnet.py

def forward(self: (...) resnet.ResNet,
x: Tensor) -> Tensor:

#(...)

_0 = (bnl).forward((convl) .forward(x, ), )

_1 = (maxpool).forward((relu).forward(_0, ), )
_2 = (layer2) .forward((layerl) .forward(_1, ), )
_3 = (layer4) .forward((layer3) .forward(_2, ), )

input = torch.flatten((avgpool) .forward(_3, ), 1)
return (fc).forward(input, )
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USING THE MODEL IN C++

In the example below we load the exported TorchScript model and run
the forward() using Torch’s C++ API.

Example of loading a traced model in PyTorch C++ API:

#include <torch/script.h>

int main(int argc, const char* argv([])

{
auto module = torch::jit::load("resnet.pt");
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch: :ones({1, 3, 224, 224}));
at::Tensor output = module->forward(inputs).toTensor();



JIT
oe

EXECUTING

Just like Python interpreter executes your code, PyTorch has an
interpreter that executes the IR instructions:

bool runImpl(Stack& stack) {
/7 (...) omitted
try {
while (true) {
Frame& frame = frames.back();
Instruction inst = INST_FETCH(O);
switch (inst.op) {
case INST(ENTER): {
INST_GUARD;
const auto& obj = peek(stack, 0, 1);
TORCH_INTERNAL_ASSERT (obj.isObject ());
entered_objects.push_back(obj);
}
INST_NEXT;
// (...) omitted
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PyrHON STACK FRAMES

Conceptually, an interpreter
executes instructions within
a context, which we refer to
as frames.
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PyrHON STACK FRAMES

Conceptually, an interpreter
executes instructions within

-

a context, which we refer to Global Frame function
as frames < 7 add(a, b)
. add .
function
sub e—— sub(a, b)
A function call generates a add a=]1 sub a=2
new frame, which is cleared _ b=4
when the function returns. =2 t= -2
This process is facilitated by ret= ret=
a stack, with the frames add a=2
being placed in order, thus b2
giving rise to the term stack a
frames. ret=4
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CPyTHON FRAME EVALUATION

Frame evaluation in CPython happens in
_PyEval_EvalFrameDefault function. This is where the core of
Python execution is, all bytecode gets executed here and this function
is heavily optimized:
for (;;) {
opcode = next_uop->opcode;
oparg = next_uop->oparg;
/7 ()
case UNARY_NOT: {
PyObject *value;
PyObject *res;
value = stack_pointer[-1];
assert (PyBool_Check(value));
res = Py_IsFalse(value) 7 Py_True : Py_False;
stack_pointer[-1] = res;
break;
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TorcHDYNAMO

» TorchScript can be limiting in some situations. TorchDynamo
can overcome some of the limitations while still allowing
unmodified Python code to be compiled;

» TorchDynamo was introduced as a way to acquire graphs, it uses
a feature introduced in CPython 3.6 (PEP 523) where the frame
evaluation API was exposed to allow specification of a
per-interpreter function pointer to handle the evaluation of
frames;
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TorcHDYNAMO

void enable_eval_frame_shim(PyThreadState* tstate) {
#if PY_VERSION_HEX >= 0103090000
if (_PyInterpreterState_GetEvalFrameFunc(tstate->interp) !=
&custom_eval_frame_shim) {
DEBUG_CHECK (previous_eval_frame == NULL);
previous_eval_frame = \
_PyInterpreterState_GetEvalFrameFunc(tstate->interp);
_PyInterpreterState_SetEvalFrameFunc (tstate->interp,
&custom_eval_frame_shim) ;
¥
#else
if (tstate->interp->eval_frame != &custom_eval_frame_shim) {
// First call
tstate->interp->eval_frame = &custom_eval_frame_shim;
}
#endif

‘orch 2 internals - Christian S. Perone (202
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foo(...)
N
<
N
N
AR : Q Cached
PyFrameObject PyCodeObiject | PyFrameObject }——9 PyCodeObject :
: dyanwic ‘
byrecode.
Guards ;. analysis +
: FX Graphs
l _PyEval_EvalFrameDefault() i ransforn (torch_*pbits)

rTT T T 1 Transformed i

| Patched 11| PyCodeObject User-defined

| PyFrameObject : | (non-torch.* bits) Compiler
call

Compiled Function

i

_PyEval_EvalFrameDefault()

TorchDynamo behavior. Credit of the diagram to Jason Ansel.
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TorcHDYNAMO

» TorchDynamo can switch back to the default Python frame
evaluation when it is not able to capture the graph, creating what
is called a graph break;

» The graph break can be created due to a lot of reasons such as:
calling external libs such as numpy, converting tensors to Python
types (e.g. Tensor.tolist() , Tensor.item() , etc);

» You can get the reason for each graph break and each graph
break has obviously a performance penalty of switching back and
forth between compiled code and Python code;

» TorchDynamo is used by torch.compile() but it is also

exposed in the torch_dynamo module.



TorcHDYNAMO

def my_fn(x):
X =X *x 2
x = x.tolist()
x += [1, 2]
return x

def custom_backend(gm: torch.fx.GraphModule,
example_inputs: List[torch.Tensor]):
gm.graph.print_tabular ()
return gm.forward

opt_my_fn = torch.compile(my_fn, backend=custom_backend)
ret = opt_my_fn(torch.tensor([1., 2.]))

Note that we are explicitly calling the Tensor.tolist() where
Torch will have to convert tensors into a Python 1ist object.

‘orch 2 internals - Christian S. Perone (202
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TorcHDYNAMO
Our custom_backend was called just once with the following
captured graph:
opcode name target args kwargs
placeholder 1z L_xz_ O {3
call_function mul <built-in function mul> (1_x_, 2) {}

output output output ((mul,),) {}



TorcH ExPORT EXECUTORCE

TorcHDYNAMO

Our custom_backend was called just once with the following

captured graph:

opcode name target args kwargs
placeholder 1z L_z_ O {
call_function mul <built-in function mul> (1_x_, 2) {}
output output output ((mul,),) {}

This graph captures only the x = x * 2 part of the code, because of
the graph break introduced due to the Tensor.tolist() operation.
TorchDynamo then delegates the execution of x += [1, 2] backto
Python’s default frame evaluation.



TorcHDYNAMO

What happens if we modify our my_fn function to go back to a torch
tensor and do a torch operation again ?



TorcHDYNAMO

What happens if we modify our my_fn function to go back to a torch
tensor and do a torch operation again ?

def my_fn(x):
X =X *x 2

# To Python list

x = x.tolist()

x += [1, 2]

# To torch temnsor

X

X

torch.tensor (x)
= X*k*2
return x
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TorcHDYNAMO

opcode name target args
placeholder 1l z Lz O
call_function mul <built-in function mul> (1_x_, 2)
output output output ((mul,),)
opcode name target args

call_function tensor <built-in method tensor> ([2.0, 4.0, 1, 2],)
call_function pow_1 <built-in function pow> (tensor, 2)
output output output ((pow_1,),)

Note that our custom_backend was called twice with different
graphs representing the first part of computation and the second part
of the computation, without the pure-Python operations on the
Python 1list .
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TorcHDYNAMO

» So far, we haven't actually compiled any of the graphs that our
custom_backend backend received. We have been focusing

only in the graph acquisition problem.

» To get performance improvements, we need to equip
torch.compile() with a compiler that will convert the
acquired graphs into efficient native code for different target
hardware such as NVIDIA GPUs, Arm CPUs, RISC-V CPUs,
TPUs, exotic edge devices such as your smart toaster, among
others.
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TorcHDYNAMO

» So far, we haven't actually compiled any of the graphs that our
custom_backend backend received. We have been focusing

only in the graph acquisition problem.

» To get performance improvements, we need to equip
torch.compile() with a compiler that will convert the
acquired graphs into efficient native code for different target
hardware such as NVIDIA GPUs, Arm CPUs, RISC-V CPUs,
TPUs, exotic edge devices such as your smart toaster, among
others.

That’s where TorchInductor comes into play.
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XPORT ExEcUTORCH

AOTAUTOGRAD

» TorchDynamo generates Torch IR, which is a high-level
representation that is not suitable to many different compiler
backends;

» If we want to speed-up training as well, we need to capture the
backward pass as well, hence the need for the AOTAutograd,
where AOT stands for ahead-of-time;

» The AOTAutograd will generate ATen/Prims IR from tracing the
forward and backward graph ahead of time;



AOTAUTOGRAD

>

TorchDynamo generates Torch IR, which is a high-level
representation that is not suitable to many different compiler
backends;

If we want to speed-up training as well, we need to capture the
backward pass as well, hence the need for the AOTAutograd,
where AOT stands for ahead-of-time;

The AOTAutograd will generate ATen/Prims IR from tracing the
forward and backward graph ahead of time;

IRs in PyTorch are a complex subject with many levels and many
decompositions available;

We will see an example of the difference between the graph
generated by TorchDynamo vs the graph generated by
AOTAutograd.
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v with Inductor

Slide from “Deep Dive into TorchInductor and PT2 Backend Integration”. Sherlock Huang et al.
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Dy~namo TorcH IR

Let’s take a look on the IR generated by TorchDynamo for the
following model:

class MLP(nn.Module):
def __init__(self):
super () .__init__Q)
self.fcl = nn.Linear(8, 10)

def forward(self, x):
self.fcl(x)
torch.nn.functional.softmax(x, -1)

X

X
return x
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Dy~namo TorcH IR

Let’s use the print_readable() method to show the graph this
time:

def custom_backend(gm: torch.fx.GraphModule,
example_inputs: list[torch.Tensor]):
gm.print_readable()
return gm.forward

model = MLP()

my_fn_opt = torch.compile(model,
backend=custom_backend)

input_tensor = torch.randn(10, 8)

ret = my_fn_opt (input_tensor)
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Dy~namo TorcH IR

This will yield the following IR:

class GraphModule (torch.nn.Module) :
def forward(self, L_x_ : torch.Tensor):
1l x_ = L_x_

# code: z = self.fcl(z)
1 _self___fcl = self.L__self_ _ fc1(1l_x_);
1_x_ = None

# code: x = torch.nn.functional.softmaz(z, -1)

softmax = torch.nn.functional.softmax(1l__self___fcl, -1);
1 _self___fcl = None

return (softmax,)

‘orch 2 internals - Christian S. Perone (202
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Let’s now change the backend a bit to use AOTAutograd:

from torch._functorch.aot_autograd import \
aot_module_simplified

def custom_backend(gm: torch.fx.GraphModule,
example_inputs: list[torch.Tensor]):
def my_compiler(gm, example_inputs):
gm.print_readable()
return gm.forward

return aot_module_simplified(
gm:
example_inputs,
fw_compiler=my_compiler



AOTAuTOGRAD ATEN IR

And here we are with the AOTAutograd generated IR (with = None ’s
and some comments removed for brevity):

class GraphModule (torch.nn.Module) :
def forward(self, primals_1: £32[10, 8],
primals_2: £32[10], primals_3: £32[10, 8]):
# code: x© = self.fcl(x)
t: £32[8, 10] = torch.ops.aten.t.default(primals_1)
addmm: £32[10, 10] =\
torch.ops.aten.addmm.default (primals_2, primals_3, t)

# code: z = torch.nn.functional.softmaz(z, -1)
_softmax: £32[10, 10] = \

torch.ops.aten._softmax.default(addmm, -1, False)
return [_softmax, primals_3, _softmax]
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TorcHINDUCTOR

Inductor takes the graph produced by AOTAutograd (consisting of
ATen/Prim IR) and perform further graph decompositions:

def forward(self, argO_1: £32[10, 8], argi_1: £32[10],
arg2_1: £32[10, 8]):
# code: z = self.fcl(z)
permute: £32[8, 10] = torch.ops.aten.permute.default(arg0_1, [1, 0])
addmm: £32[1024, 10] = \
torch.ops.aten.addmm.default(argl_1, arg2_1, permute);

# code: © = torch.nn. functional.softmaz(z, -1)

amax: £32[10, 1] torch.ops.aten.amax.default (addmm, [-1], True)
sub: £32[10, 10] torch.ops.aten.sub.Tensor (addmm, amax)

exp: £32[10, 10] = torch.ops.aten.exp.default(sub)

sum_1: £32[10, 1] = torch.ops.aten.sum.dim_IntList(exp, [-1], True)
div: £32[10, 10] = torch.ops.aten.div.Tensor(exp, sum_1)

return (div,)
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TorcHINDUCTOR

» After that, the graph goes to the scheduling phase where fusion
can happen and then to the appropriate TorchInductor backend;

» TorchInductor can generate C++/OpenMP code or Triton. The
generated kernels are then called by a generated wrapper;

» Industry is collaborating with backend optimizations (e.g. Intel
speedups for CPU bfloat16 in some recent processors);



XPORT ExEcUTORCH

TorcHINDUCTOR

» After that, the graph goes to the scheduling phase where fusion
can happen and then to the appropriate TorchInductor backend;

» TorchInductor can generate C++/OpenMP code or Triton. The
generated kernels are then called by a generated wrapper;

» Industry is collaborating with backend optimizations (e.g. Intel
speedups for CPU bfloat16 in some recent processors);

» We will see now a part of a C++ kernel generated by
TorchInductor for the fused softmax with CPU tensors (in
MacOS as an example).
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TorcHINDUCTOR

extern "C" void kernel(float* in_out_ptrO,
float* out_ptrO, float* out_ptrl)
{
auto in_ptr0 = in_out_ptrO0;
{
#pragma GCC tvdep
for(long iO=static_cast<long>(0OL); iO<static_cast<long>(10L);
i0+=static_cast<long>(1L))
{
float tmp_accO = -std::numeric_limits<float>::infinity();
for(long il=static_cast<long>(OL); il<static_cast<long>(10L);
il+=static_cast<long>(1L))
{
auto tmp0 = in_ptrO[static_cast<long>(il + (10L*i0))];
tmp_accO = max_propagate_nan(tmp_accO, tmpO0);
}
out_ptrO[static_cast<long>(i0)] = tmp_accO;
}

‘orch 2 internals - Christian S. Perone (202
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TorcHINDUCTOR

Now, if we run the same code with CUDA tensors, what we will get is
the Triton kernel below:

O@triton.jit
def triton_(in_ptrO, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
# ... (omitted for brevity)
tmp0 = tl.load(in_ptr0 + (rl + (10%x0)), rmask & xmask, other=0)
tmpl = tl.broadcast_to(tmpO, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmpl, float("-inf"))
tmp4 = triton_helpers.max2(tmp3, 1)[:, Nonel
tmp5 = tmpO - tmp4
tmp6 = tl.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmpl0 = tl.sum(tmp9, 1)[:, Nonel
tmpll = tmp6 / tmplO
tl.store(out_ptr2 + (r1 + (10%x0)), tmpll, rmask & xmask)
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TorcH ExPoORT PATH

» Torch Export ( torch.export ) was created to do whole-graph
capture;

» As we discussed earlier, TorchDynamo can create graph breaks
and do this back-and-forth with the Python interpreter;

» This cooperative dynamic with Python makes it difficult to be
able to embed it in environments without the Python runtime;
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TorcH ExPoORT PATH

» Torch Export ( torch.export ) was created to do whole-graph
capture;

» As we discussed earlier, TorchDynamo can create graph breaks
and do this back-and-forth with the Python interpreter;

» This cooperative dynamic with Python makes it difficult to be
able to embed it in environments without the Python runtime;

» torch.export relies onthe torch.compile stack, but with
important differences: it doesn’t fallback to Python interpreter, so
captured graph cannot have graph breaks and code changes can
be required;

» The main goal of torch.export is to provide normalized IR
using Core ATen IR opset that can be loaded and executed in
different languages/environments.
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Dy~namo TorcH IR

Let’s use the same code we used earlier with TorchDynamo and export
it with torch.export :

class MLP(nn.Module):
def __init__(self):
super () .__init__QO
self.fcl = nn.Linear(8, 10)

def forward(self, x):
x = self.fc1(x)
X = torch.nn.functional.softmax(x, -1)
return x
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ToRrRCH EXPORT

>>> import torch.export as export

>>> model = MLP()

>>> sample = torch.randn(10, 8)

>>> exp = export.export(model, (sample,))

>>> exp

<torch.export.ExportedProgram object at 0x163c8ad10>
>>> print (exp)
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ToRrRCH EXPORT

>>> import torch.export as export

>>> model = MLP()

>>> sample = torch.randn(10, 8)

>>> exp = export.export(model, (sample,))

>>> exp

<torch.export.ExportedProgram object at 0x163c8ad10>
>>> print (exp)

class GraphModule(torch.nn.Module) :
def forward(self, argO_1: £32[10, 8], argl_1: £32[10], arg2_1: £32[10, 81):
permute: £32[8, 10] = \
torch.ops.aten.permute.default(arg0_1, [1, 0])
addmm: £32[10, 10] = \
torch.ops.aten.addmm.default(argl_1, arg2_1, permute)
_softmax: £32[10, 10] = \
torch.ops.aten._softmax.default(addmm, -1, False)
return (_softmax,)

...

‘orch 2 internals - Christian S. Perone (202
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ToRrRCH EXPORT

Let’s serialize the exported graph:

>>> export.save(exp, "serialized_graph.pt2")
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ToRrRCH EXPORT

Let’s serialize the exported graph:

>>> export.save(exp, "serialized_graph.pt2")

We can see that the format is a zip archive:

$ file serialized_graph.pt2
serialized_graph.pt2: Zip archive data
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ToRrRCH EXPORT

Let’s serialize the exported graph:

>>> export.save(exp, "serialized_graph.pt2")

We can see that the format is a zip archive:

$ file serialized_graph.pt2
serialized_graph.pt2: Zip archive data

... and we can extract to inspect:

$ unzip serialized_graph.pt2

extracting: serialized_exported_program. json
extracting: serialized_state_dict.json
extracting: version
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ToRrRCH EXPORT

There is a version file:

$ cat version
1



TorcH EXPORT

[e]e]o]e] Jelele)

ToRrRCH EXPORT

There is a version file:

$ cat version
1

A serialized_exported_program. json :

$ file serialized_exported_program.json
serialized_exported_program. json: JSON data
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ToRrRCH EXPORT

There is a version file:

$ cat version
1

A serialized_exported_program. json :

$ file serialized_exported_program.json
serialized_exported_program. json: JSON data

And the serialized_state_dict.json:
$ file serialized_state_dict.json

serialized_state_dict.json: Zip archive data

Not sure why PyTorch usesa json extension for a Zip archive.



ToRrRCH EXPORT

$ jq "keys" serialized_exported_program.json
["equality_constraints",

"example_inputs",

"graph_module",

"opset_version",

"range_constraints",

"schema_version"]

PyTorch 2 internals - Christian S. Perone (202
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ToRrRCH EXPORT

$ jq "keys" serialized_exported_program.json
["equality_constraints",

"example_inputs",

"graph_module",

"opset_version",

"range_constraints",

"schema_version"]

The graph is in the graph_module and thereisa opset_version
with the used ATen IR opset version:

$ jq .opset_version serialized_exported_program.json

{
"aten": 10

}



ToRrRCH EXPORT

Let’s see the nodes from the graph:

$ jq ".graph_module.graph.nodes[].target" (...)
"torch.ops.aten.permute.default"
"torch.ops.aten.addmm.default"
"torch.ops.aten._softmax.default"
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ToRrRCH EXPORT

Let’s see the nodes from the graph:
$ jq ".graph_module.graph.nodes[].target" (...)

"torch.ops.aten.permute.default"
"torch.ops.aten.addmm.default"
"torch.ops.aten._softmax.default"

Let’s see the outputs of the graph:

$ jq .graph_module.graph.outputs (...)
[{

"as_none": null,

"as_tensor": {

"name": "_softmax"

},

"as_tensors": null,

"as_int": null,

"as_ints": null,

" "

}]
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ToRrRCH EXPORT

» You might need to rewrite your code if you use torch.export,
especially if you have graph breaks and data/shape-dependent
control flow as well;

» torch.export is, nevertheless, a very nice direction towards
standardization of the IR. If vendors adopt it, you can skip
intermediate representations (e.g. ONNX) and many nightmares;

» APIs, IRs opsets are very recent and subject to changes, so keep
an eye on its development;



ToRrRCH EXPORT

» You might need to rewrite your code if you use torch.export,
especially if you have graph breaks and data/shape-dependent
control flow as well;

» torch.export is, nevertheless, a very nice direction towards
standardization of the IR. If vendors adopt it, you can skip
intermediate representations (e.g. ONNX) and many nightmares;

» APIs, IRs opsets are very recent and subject to changes, so keep
an eye on its development;

» We have now a serialized graph, let’s now find out how we can
actually execute it outside of Python. That’s where ExecuTorch
joins the party !
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ExecuTorcH

» ExecuTorch (ET) leverages PyTorch 2 compiler and export path
to enable on-device execution of PyTorch models;

» Portable runtime, low memory footprint and doesn’t use
TorchScript (as in PyTorch mobile);

» Still a lot of on-going development, this talk is aligned with the
vo.1.0 branch of ExecuTorch, a preview release for testing and
evaluation;

» Multiple backends (arm, qualcomm, xnnpack, apple, etc) where
ExecuTorch can delegate to DSPs, NPUs, CPUs, etc, being
developed;

» Hope to see more industry collaboration.
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ExecuTorcH

Executorch has two main phases:

AOT (AHEAD OF TIME)

This is the program preparation (before the execution). ExecuTorch leverages
TorchDynamo and PyTorch export to convert the model into an IR.
Optionally, backends can plug-in in this phase as well in what is called
backend delegation for AOT.
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ExecuTorcH

Executorch has two main phases:

AOT (AHEAD OF TIME)

This is the program preparation (before the execution). ExecuTorch leverages
TorchDynamo and PyTorch export to convert the model into an IR.
Optionally, backends can plug-in in this phase as well in what is called
backend delegation for AOT.

RUNTIME

ExecuTorch runtime executes models on the edge devices (which can be a
high-end or very constrained edge device). It will initialize, execute and
release resources. It will also initialize delegates and (surprise) delegate
execution of the program (or parts of it) to them as well.
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ExecuTorcH CONCEPT OVERVIEW

nn.Module
exports 0, via
forchexpor)
Model Lowering
and Export
- APls y apply
ATon dialoct ;
N o adty Delegate Partiioner,
Edge dialect ‘Delogate Preprocessor
Backend dialoct

Memory Planning
SDK axpansto l

model.pte file ™ >Codegen

consumed by

Kernol Rogistration Library )
Backend Delegation (AOT)

Ahead of Time (compile time)
Runtime Backend Delegation (Runtime)
Program Loader

. /Operator Registry
7/ Backena ety

Initialization

Executor " Delogato Execution

Inference Result

ExecuTorch Runtime

Image from ExecuTorch documentation, December 2023.
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ExecuTorcH LOWERING

ExecuTorch performs progressive lowering of the graph or parts of the
graph to different IRs, so the operations get progressively closer to the
hardware:

» Edge dialect: all operators from predefined operator set and
inputs/outputs must be tensor
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ExecuTorcH LOWERING

ExecuTorch performs progressive lowering of the graph or parts of the
graph to different IRs, so the operations get progressively closer to the
hardware:

» Edge dialect: all operators from predefined operator set and
inputs/outputs must be tensor

» Backend dialect: immediate result of exporting Edge dialect to a
particular backend. Allows the introduction of target-specific
operators (that are aware of the hardware they will run later)
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ExecuTorcH MEMORY PLANNING

Before serializing the program ( .pte file), ExecuTorch performs
memory planning. It uses size and lifespan of mutable tensors to plan
their location (offset) in fixed size memory arenas:
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ExecuTorcH MEMORY PLANNING

Before serializing the program ( .pte file), ExecuTorch performs
memory planning. It uses size and lifespan of mutable tensors to plan
their location (offset) in fixed size memory arenas:

NAIVE ALGORITHM

Concatenates all the tensors together in a linear memory without considering
any memory re-use.
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ExecuTorcH MEMORY PLANNING

Before serializing the program ( .pte file), ExecuTorch performs
memory planning. It uses size and lifespan of mutable tensors to plan
their location (offset) in fixed size memory arenas:

NAIVE ALGORITHM

Concatenates all the tensors together in a linear memory without considering
any memory re-use.

GREEDY ALGORITHM

Tries to re-use the already allocated memory and choose based on the best-fit
criteria.
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ExecuTorcH MEMORY PLANNING

Before serializing the program ( .pte file), ExecuTorch performs
memory planning. It uses size and lifespan of mutable tensors to plan
their location (offset) in fixed size memory arenas:

NAIVE ALGORITHM

Concatenates all the tensors together in a linear memory without considering
any memory re-use.

GREEDY ALGORITHM

Tries to re-use the already allocated memory and choose based on the best-fit
criteria.

program = edge_program.to_executorch( # Ezample
exir.ExecutorchBackendConfig(
memory_planning_pass=MemoryPlanningPass (
memory_planning_algo="greedy",
# (...)
)
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ExecuTorcH EXPORT

Let’s export the same model that we had before:

class MLP(nn.Module):
def __init__(self):
super() .__init__Q
self.fcl = nn.Linear(8, 10)

def forward(self, x):
x = self.fcl1(x)
x = torch.nn.functional.softmax(x, -1)
return x

O00000®0000000000
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ExecuTorcH EXPORT

from torch._export import capture_pre_autograd_graph
from executorch.exir import to_edge

model = MLP()

model = model.eval()

inputs = (torch.randn(10, 8),)

pre_atgrad_aten_ir = capture_pre_autograd_graph(model,
inputs)

aten_ir = export.export(pre_atgrad_aten_ir, inputs)

edge_ir = to_edge(aten_ir)

program = edge_ir.to_executorch()

with open("model.pte", "wb") as fhandle:
fhandle.write(program.buffer)
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EXECUTORCH SERIALIZATION

The serialization of the program uses the same memory efficient
format used in TensorFlow Lite: FlatBuffers. The Program schema is

defined in the schema/program.fbs file:
// (...) omitted for brevity

table Program {
// Schema version.
version:uint;

// List of EzecutionPlans that make up the program.
// Each EzecutionPlan corresponds with a different
// entry point into the model.
execution_plan: [ExecutionPlan] ;

// (...) omitted for brevity
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EXECUTORCH SERIALIZATION

Let’s see how our exported program looks like by converting the
binary flatbuffer to json:

$ flatc --strict-json --raw-binary \
-t executorch/schema/program.fbs -- ./model.pte
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EXECUTORCH SERIALIZATION

Let’s see how our exported program looks like by converting the
binary flatbuffer to json:

$ flatc --strict-json --raw-binary \
-t executorch/schema/program.fbs -- ./model.pte

$ jq ".execution_plan[0] .name" model.json

"forward"
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EXECUTORCH SERIALIZATION

Let’s see how our exported program looks like by converting the
binary flatbuffer to json:

$ flatc --strict-json --raw-binary \
-t executorch/schema/program.fbs -- ./model.pte

$ jq ".execution_plan[0] .name" model.json

"forward"

$ jq ".execution_plan[0].operators[].name" model. json
"aten: :permute_copy"

"aten: :addmm"

"aten::_softmax"
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MEMORY PLANNING IN ACTION

Let’s see how one tensor looks like in the Program :

G
"val_type": "Tensor",
"val": {

"scalar_type": "FLOAT",
"sizes": [10, 8],
"dim_order": [0, 1],
"allocation_info": {
"memory_id": 1,
"memory_offset": 800

G
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MEMORY PLANNING IN ACTION

Constant tensors (e.g. weights in a Linear layer) are handled
differently than mutable tensors:

Result<void*> getTensorDataPtr(...) {
if (s_tensor->constant_buffer_idx() > 0) {
auto data =
program->get_constant_buffer_data(
s_tensor->constant_buffer_idx());
return const_cast<void*>(data.get());

}

const executorch_flatbuffer::AllocationDetails* allocation_info =
s_tensor->allocation_info();
if (allocation_info != nullptr) {
const uint32_t memory_id = allocation_info->memory_id() - 1;
return allocator->get_offset_address(
memory_id, allocation_info->memory_offset(), nbytes);
¥
/7 (...)
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ExecuTorcH CONCEPT OVERVIEW

nn.Module
exports 0, via
forchexpor)
Model Lowering
and Export
- APls y apply
ATon dialoct ;
N o adty Delegate Partiioner,
Edge dialect ‘Delogate Preprocessor
Backend dialoct

Memory Planning
SDK axpansto l

model.pte file ™ >Codegen

consumed by

Kernol Rogistration Library )
Backend Delegation (AOT)

Ahead of Time (compile time)
Runtime Backend Delegation (Runtime)
Program Loader

. /Operator Registry
7/ Backena ety

Initialization

Executor " Delogato Execution

Inference Result

ExecuTorch Runtime

Image from ExecuTorch documentation, December 2023.
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ExecuTorcH RUNTIME

ExecuTorch runtime is a portable runtime:

» C++11 compatible, no exceptions or RTTI
» They provide cmake and buckz build support

» Memory allocation mechanism is provided by the user, the core
runtime doesn’t do memory allocations (although backend
kernels might, but disencouraged to do so)

» Can have different memory regions for mutable tensors (e.g.
SRAM/DRAM placement)

» Without kernels or backend, runtime is 50kb
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ExecuTorcH RUNTIME

We have now the exported Program and want to load the
model .pte and execute it on the edge.

» At this point, your next steps will depend on the edge device you
want the runtime to run;

» There are many examples in ExecuTorch on how to deploy using
XNNPACK, or targeting ARM (e.g. Ethos-U NPU), Qualcomm
Hexagon NPU, DSPs, building Android/iOS apps, etc;
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ExecuTorcH RUNTIME

We have now the exported Program and want to load the
model .pte and execute it on the edge.

» At this point, your next steps will depend on the edge device you
want the runtime to run;

» There are many examples in ExecuTorch on how to deploy using
XNNPACK, or targeting ARM (e.g. Ethos-U NPU), Qualcomm
Hexagon NPU, DSPs, building Android/iOS apps, etc;

» For this tutorial, I will target a Pixel Watch 2 device (with a
Cortex As3) and use the portable CPU kernels.
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LOADING THE PROGRAM
Let’s start looking at how we can use the runtime in C++ by first

loading the serialized Program :

Result<FileDataloader> loader = FileDataloader: :from(model_path);
Result<Program> program = Program::load(&loader.get());
Result<MethodMeta> method_meta = program->method_meta("forward");

‘orch 2 internals - Christian S. Perone (202
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LOADING THE PROGRAM

Let’s start looking at how we can use the runtime in C++ by first
loading the serialized Program :

Result<FileDataloader> loader = FileDataloader: :from(model_path);
Result<Program> program = Program::load(&loader.get());
Result<MethodMeta> method_meta = program->method_meta("forward");

» The .pte file is opened

» File header is parsed

» Flatbuffer is created with serialized data

‘orch 2 internals - Christian S. Perone (202
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MEMORY AFFAIR

Let’s now create an allocator method_allocator for the method
structure:

static uint8_t method_allocator_pool[4 * 1024U * 1024U];
MemoryAllocator method_allocator{
MemoryAllocator (sizeof (method_allocator_pool),
method_allocator_pool)};

‘orch 2 internals - Christian S. Perone (202
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MEMORY AFFAIR

Let’s now create an allocator method_allocator for the method
structure:

static uint8_t method_allocator_pool[4 * 1024U * 1024U];
MemoryAllocator method_allocator{
MemoryAllocator (sizeof (method_allocator_pool),
method_allocator_pool)};

Most of this code is from executor_runner.cpp in ExecuTorch.
Don't get too attached to the idiosyncrasies, but to what it is actually
doing.

‘orch 2 internals - Christian S. Perone (202
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MEMORY AFFAIR

Let’s allocate now the planned buffers for the mutable tensors:

std::vector<std::unique_ptr<uint8_t[]>> buffers;
std: :vector<Span<uint8_t>> spans;

size_t n_planned_buffers = \
method_meta->num_memory_planned_buffers();

for (size_t id = 0; id < n_planned_buffers; ++id) {
size_t buffer_size = \
method_meta->memory_planned_buffer_size(id).get();
buffers.push_back(std: :make_unique<uint8_t []>(buffer_size));
spans.push_back ({buffers.back().get(),
buffer_sizel});

}

HierarchicalAllocator planned_memory({buffers.data(), spans.size(O});
MemoryManager memory_manager (4method_allocator, &planned_memory);
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MEMORY AFFAIR
We can now finally execute the method:

Result<Method> method = \

program->load_method ("forward", &memory_manager);
method.set_input(...) // set the method inputs
Error status = method->execute();

// Get the outputs into "outputs”

std: :vector<EValue> outputs(method->outputs_size());
status = method->get_outputs(outputs.data(), outputs.size());

‘orch 2 internals - Christian S. Perone (202
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OUR VICTIM TODAY

v

Google Pixel Watch 2

» Qualcomm SW5100, 4x Cortex As3
cores

2GB of RAM
Android Wear OS 4

v

v
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OUR VICTIM TODAY

» Google Pixel Watch 2

» Qualcomm SW5100, 4x Cortex As3
cores

» 2GB of RAM
» Android Wear OS 4

» I'm not affiliated with Google, this
happened to be the first small device
in front of me. I'm planning to
experiment with a more constrained
RP2040 (Raspberry Pi Pico,
Cortex-Mo+) next time.
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WHIcH CPU 1S THAT

Pixel Watch 2 runs Android, let’s see the architecture:

$ uname -a
Linux localhost 5.15.104-android13-(...) armv8l Toybox

Interestingly this SoC supports armv8 64-bits, but it is running on
32-bits with the kernel compiled for armv8l (32-bits, little ending).
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WHIcH CPU 1S THAT

Pixel Watch 2 runs Android, let’s see the architecture:

$ uname -a
Linux localhost 5.15.104-android13-(...) armv8l Toybox

Interestingly this SoC supports armv8 64-bits, but it is running on
32-bits with the kernel compiled for armv8l (32-bits, little ending).

$ cat /proc/cpuinfo

processor : O

model name : ARMv8 Processor rev 4 (v8l)

Features : half thumb fastmult vfp edsp neon vfpv3 tls vipvé
idiva idivt lpae evtstrm aes pmull shal sha2 crc32

CPU implementer : 0x51

CPU architecture: 8

CPU variant : Oxa

CPU part : 0x801

CPU revision : 4

...

yTorch 2 internals - Christian S. Perone (202



ExeEcuToRCH

000000000000 0000

TOOLCHAINS EVERY WHERE

Let’s prepare to use the Android toolchain for cross-compilation:

Download the Android NDK and set its path:

$ export ANDROID_NDK=/opt/android-ndk-r26b
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TOOLCHAINS EVERY WHERE

Let’s prepare to use the Android toolchain for cross-compilation:

Download the Android NDK and set its path:

$ export ANDROID_NDK=/opt/android-ndk-r26b

Then we just add some variables into CMakeLists.txt in
ExecuTorch:

set (CMAKE_SYSTEM_NAME Android)
set (CMAKE_SYSTEM_VERSION 24)
set (CMAKE_ANDROID_ARCH_ABI armeabi-v7a)

I only found the compatible armeabi-v7a architecture in Android
NDK, since armv8l is backwards compatible with ARMv7, I'm using
this one.
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SELECTIVE BUILD

There are many ways of building our application and linking to
ExecuTorch, what we will use is the selective build, which will select
only a few kernels to be compiled and we will use MobileNetV2.



PORT EXECUTORCH

O0000000000O000000

SELECTIVE BUILD

There are many ways of building our application and linking to
ExecuTorch, what we will use is the selective build, which will select
only a few kernels to be compiled and we will use MobileNetV2.

Luckily, ExecuTorch has some scripts to help with exporting the
model and compiling. Let’s export MobileNetV2 ( mv2 ):

$ python3 -m examples.portable.scripts.export --model_name="mv2"

This will create the serialized program mv2.pte .
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SELECTIVE BUILD

There are many ways of building our application and linking to
ExecuTorch, what we will use is the selective build, which will select
only a few kernels to be compiled and we will use MobileNetV2.

Luckily, ExecuTorch has some scripts to help with exporting the
model and compiling. Let’s export MobileNetV2 ( mv2 ):

$ python3 -m examples.portable.scripts.export --model_name="mv2"

This will create the serialized program mv2.pte .

Now we can compile it with cmake :

$ examples/selective_build/test_selective_build.sh cmake
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SELECTIVE BUILD

You can look at the test_selective_build.sh but the important
bit here is the selected ops list we are building in our application:

$ cmake (...) -DEXECUTORCH_SELECT_OPS_LIST="aten::convolution.out,\
(...) aten::mean.out,aten::view_copy.out,aten::permute_copy.out,\
aten: :addmm.out,aten,aten: :clone.out"

Instead of building all kernels, we are selecting only a few of them.
This is very important for more constrained devices.
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SELECTIVE BUILD

You can look at the test_selective_build.sh but the important
bit here is the selected ops list we are building in our application:

$ cmake (...) -DEXECUTORCH_SELECT_Q0PS_LIST="aten::convolution.out,\
(...) aten::mean.out,aten::view_copy.out,aten::permute_copy.out,\
aten: :addmm.out,aten,aten: :clone.out"

Instead of building all kernels, we are selecting only a few of them.
This is very important for more constrained devices.

We just copy our binary model_app and the exported model

mv2.pte to the Pixel Watch 2 using Android adb tool and then run
the model:

$ model_app --model_path="mv2.pte"
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SELECTIVE BUILD

The output of executing the example app in the Pixel Watch 2 will be
something like this:

OQutput O: tensor(sizes=[1, 1000], [
-0.50986, 0.300638, 0.0953863, 0.147721, 0.231201, 0.338555,
0.20689, -0.0575741, -0.389267, -0.0606858, -0.0213996,
-0.121034, -0.288955, 0.134052, -0.171977, -0.060362,
0.0203591, -0.0585306, 0.337859, -0.0718654, 0.490758,
0.524143, 0.197859, 0.122067, -0.35913, 0.10946, 0.347745,
0.478512, 0.226557, 0.0363519,

...)

Showing the 1000 class logits for the input (all 1’s in our case).
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THANKS !

I hope you enjoyed this presentation ! This was an overview of the
internals of some of the projects in the PyTorch ecosystem that came
out recently. I skipped some other important aspects such as
distributed training, but hopefully it will come soon in the next
iteration of this presentation.

Huge thanks to all PyTorch contributors !
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Q&A

Thanks !
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