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Motivation
Mathematical optimization is the core of Machine Learning, without it we
wouldn’t be able to �nd the needle in the haystack of the parameter space.

I It materializes in Machine Learning by minimizing an
objective function such as a divergence or any function that
penalizes for mistakes of the model;

I We will talk here about local methods that are characterized by the
search of an optimal value within a neighboring set of parameter space;

I We have a huge variety of methods that were recently developed,
therefore this talk is by far from being a comprehensive
collection. I will focus on intuition and understanding, instead of
throwing algorithms.
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Empirical RiskMinimization (ERM)

I On a supervised setting, we want to �nd a function or a model fθ(·)
that describes the relationship between a random feature vector x and
the label target vector y. We assume a joint distribution pdata(x,y);

I We start by de�ning a loss functionL, evaluated asL(fθ(x), y) that
gives us a penalization for the di�erence between predictions fθ(x)
and the true label y;

I Now, taking the expectation of the loss we have our riskR:

Definition: Risk

R(f) = Ex,y∼pdata [L(fθ(x),y)︸ ︷︷ ︸
Loss

] =
∫
L(fθ(x),y) dpdata(x,y),

that we want to minimize.
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Empirical RiskMinimization (ERM)

I However, we don’t know pdata(x,y), we only have access to a sample
training setD = (xi, yi) ∼ pdata;

I Therefore, we can approximate the risk with the empirical risk:

Definition: Empirical Risk

Remp(f) = 1
n

n∑
i=1

L(fθ(xi), yi)

I The Empirical Risk Minimization (ERM) principle says that our
learning algorithm should minimize the empirical risk;

I The MLE (Maximum Likelihood Estimation) can be posed as a
special case of ERM where the loss function is the negative
log-likelihood.
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Maximum Likelihood Estimation (MLE)
Under the ERM framework we can describe the MLE cost function J(·) as:

J(θ) = Ex,y∼p̂data − log pθ(y | x)︸ ︷︷ ︸
log-likelihood

where we de�ne the cost as the expectation under the empirical distribution
p̂data, as we only have access to a sample training setD = (xi, yi) ∼ pdata.

I We might be interested in let’s say predicting a statistic of the
distribution, such as the mean of y using the predictor fθ(x)

I Our interest here in terms of optimization is:

θ∗ = arg min
θ

J(θ),where θ ∈ Rn
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The global optimum
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Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;

I This theorem is very powerful as it allows us to approximate any
di�erentiable (and twice di�erentiable) function;

I The∇2f(·) is also called the Hessian, or Hf . We will talk more
about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;

I The∇2f(·) is also called the Hessian, or Hf . We will talk more
about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;
I The∇2f(·) is also called the Hessian, or Hf . We will talk more

about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;
I The∇2f(·) is also called the Hessian, or Hf . We will talk more

about it later;
I We will understand the deep connection of this approximation with

Gradient Descent.
1Taylor’s theorem gives an approximation of a k-times di�erentiable function around

a given point by a polynomial of degree k. We’re using only up to second-order here.



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
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Taylor approximation in Jax
from jax import grad

def taylor_first_order(θ, θ0):
return f(θ0) + grad(f)(θ0)*(θ - θ0)

def taylor_second_order(θ, θ0):
d1 = taylor_first_order(θ, θ0)
d2 = 1./2. * grad(grad(f))(θ0) * (θ - a)**2
return d1 + d2

>>> taylor_first_order(6.01, 6.0)
33.421864
>>> taylor_second_order(6.01, 6.0)
33.422104
>>> taylor_first_order(6.5, 6.0)
44.0067
>>> taylor_second_order(6.5, 6.0)
44.60597

Do not use greek symbols on your Python code, your colleagues will curse you.
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Linear approximation plane

Source: Tangent Planes and Linear Approximations. Calculus Volume 3.

Rice University. 2020. Creative Commons Attribution 4.0 International License.
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Local approximation and second-order
I Let’s now think about that second-order term:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

I If we do a small step from θ0, what happens with the second-term ?
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The steepest descent

I Even if f(·) is very complex, locally it is simple, and we can use a
simple function to approximate it, a linear function:

h(θ) ≈ f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

I This is also called linearization;

I It is already apparent what we need now. How can we guarantee,
locally, that we can always minimize the function (reduce the loss) ?

I We can just follow the slope (negative) of the approximation that is
given by−∇f(θ0);

I No twice di�erentiability requirement, less computational resources;
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Section II

; Gradient Descent <
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Gradient Descent

Algorithm The general gradient descent algorithm.

Input: initial weights θ(0), iterations T , learning rate η
Output: �nal weights θ(T )

1. for t = 0 to T − 1
2. compute∇L(θ(t))
3. θ(t+1) := θ(t) − η∇L(θ(t))
4. return θ(T )

The important part here is the iterative rule:

θ(t+1) = θ(t) − η∇L(θ(t))︸ ︷︷ ︸
How much we move
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Gradient Descent - Loss surface
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High curvatures
Gradient descent can su�er on some pathological curvatures and cause a lot
of oscillations:
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Momentum
Momentum is a method to damp out oscillations:
Vanilla gradient descent:

θ(t+1) = θ(t) − η∇L(θ(t))

Momentum:

V (t+1) = β︸︷︷︸
Constant

V (t) +∇L(θ(t))

θ(t+1) = θ(t) − η V (t+1)︸ ︷︷ ︸
Momentum bu�er

I Momentum works by acceleration and smoothing, it makes the
trajectories to take more time to react to changes in the loss landscape;

I Note that with β = 0 we recover vanilla Gradient descent;
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Momentum

Pause for a quick demo from Lili Jiang, from:
https://github.com/lilipads/gradient_descent_viz

https://github.com/lilipads/gradient_descent_viz
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Stochastic Gradient Descent (SGD)
It turns out that we don’t quite need to compute the gradients∇L(θ) over
the whole dataset at every iteration of Gradient descent:

θ(t+1) = θ(t) − η ∇Li(θ(t))︸ ︷︷ ︸
Individual samples

where we do random sampling (or not, we can stratify too, in practice it can
lead to better results) of individual samples i at every step.

I Much more e�cient (don’t have to compute gradient for entire
dataset);

I Noise (can be bene�cial);
I Lots of redundancy on real datasets;
I Highly correlation at early steps (similar gradients SGD vs GD);

SGD can be traced back to 1950s work on the Robbins–Monro algorithm 3.

3Robbins and Monro, “A Stochastic Approximation Method”, 1951
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Graphics Processing Unit (GPUs)
Most of the operations in Machine Learning ends up being lowered to
GEMM (General Matrix Multiplication) and MAC
(Multiply–accumulate operation) operations.
To leverage these massively parallel engines, we need to provide enough data
to take advantage of the parallelization potential.

Source: Standard GPU memory hierarchy. By Giacomo Parigi.
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Mini-batch SGD
That’s why using mini-batches instead of individual samples on SGD is a
perfect marriage of having better gradient estimates together with improved
parallelization:

∇̃L(θ(t)) = 1
|B|︸︷︷︸

Batch size

∑
i∈B
∇Li(θ(t))

θ(t+1) = θ(t) − η ∇̃L(θ(t))︸ ︷︷ ︸
Estimated gradients

If we do random sampling, then:

E[∇̃L(θ(t))] = ∇L(θ)︸ ︷︷ ︸
Unbiased estimate
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Section III

; Adaptation and
Preconditioning <
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AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015
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AdaptiveMoment Estimation (Adam)

Algorithm g2
t = gt � gt. Good defaults: α = 0.001, β1 = 0.9, β2 = 0.999 and

ε = 10−8. βt1 and βt2 are β1 and β2 to the power t.

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector, α: Stepsize
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased �rst moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected �rst moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)
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AdaptiveMoment Estimation (Adam)
Lots of things going on here, let’s focus on how moments are being
computed and neglect bias correction and initialization:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

And the parameter updates:

θt ← θt−1 − α ·
m̂t√
v̂t + ε

I Do you recognizemt ?
I What happens when the uncentered variance grows ?
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The good, the bad, and theHessian

I The convergence rate of Gradient descent is deeply connected to the
curvature of the landscape it is trying to optimize;

I The Hessian matrix Hf carries information about the curvature,
therefore we usually use it understand problems or even make them
better conditioned;

I The Hf is often very costly to compute for real-life problems,
therefore much of the work rely on approximating it or computing
information about it without having to materialize the entire matrix;
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Hessian
The Hf is a square matrix of 2nd-order partial derivatives. Let’s compute
the Hf of f(x, y) = x2y + xy3, starting with �rst-order:

∂f

∂x
= 2xy + y3 ,

∂f

∂y
= x2 + 3xy2

Second order
∂2f

∂x2 = 2y ,
∂2f

∂y∂x
2x+ 3y2 ,

∂2f

∂x∂y
= 2x+ 3y2 ,

∂2f

∂y2 = 6xy

Hessian

Hf =

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =
[

2y 2x+ 3y2

2x+ 3y2 6xy

]

Note that the Hf can be constant and not depend on variables or depend only on
some of them. We will see this case later.
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Hessian Eigenvalues
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ConditionNumber
The Condition number, also de�ned as κ, is the ratio of maximum and
minimum eigenvalues (λmax and λmin) of the Hessian Hf :

κ = λmax

λmin

I When κ is high we say that the problem is ill-conditioned;
I Steepest descent convergence rate is slow for ill-conditioned problems;
I Let’s understand it on a quadratic problem to gain intuition.
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ConditionNumber

Hf
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ConditionNumber
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Hessian eigenvalue spectral density (ESD)
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Cifar-10 ResNet Res20

Source: Yao, Z., Gholami, A., Keutzer, K., & Mahoney, M. W. (2019, December 15). PYHESSIAN:

Neural networks through the lens of the hessian.

ResNet with depth 20 trained on Cifar-10. ResNet_BN is the ResNet
without Batch Normalization and the ResNet_Res is without the residual
connections. In 6, they also show that the distribution seem to composed of
two parts: the bulk around zero, and the edges scattered away from zero.

6Sagun, Leon Bottou, and LeCun, “Eigenvalues of the Hessian in Deep Learning: Singularity and

Beyond”, 2016
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Preconditioning

From Adam’s original paper:
(. . . ) Like natural gradient descent (NGD) 7, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 8; (. . . )

I Preconditioning can be viewed as a change in the geometry;

I It can help with poorly conditioned problems;
I We will talk about the Fisher Information Matrix (FIM) later;

7Amari, “Natural Gradient Works Efficiently in Learning”, 1998
8Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013
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Preconditioning

θ(t+1) = θ(t) − η∇L(θ(t))
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Gradients
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Preconditioning

θ(t+1) = θ(t) − η

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Identity

∇L(θ(t))︸ ︷︷ ︸
Gradients
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Preconditioning

θ(t+1) = θ(t) − H−1
L︸ ︷︷ ︸

Hessian

∇L(θ(t))︸ ︷︷ ︸
Gradients

I Can be interpreted as an iterative minimization of the quadratic
approximation, we’re using a 2nd-order term here, remember the
Taylor approximation ?

The superscript t was omitted from the H−1
L for clarity.
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Preconditioning

θ(t+1) = θ(t) − (HL + λI)−1︸ ︷︷ ︸
Damped Hessian

∇L(θ(t))︸ ︷︷ ︸
Gradients

The superscript t was omitted from the HL for clarity.
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Preconditioning
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2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Let’s think about what the
preconditioner is doing in this
situation, we have a point
θ ∈ R2 at θ = (0.5, 0.5) and
we have that:

∇f(θ) = (2.5, 1.0)

Hf =
[
5.0 0.0
0.0 2.0

]
θ −H−1

L ∇f(θ) = (0., 0.)
θ −∇f(θ) = (−2.,−0.5)
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Hessian as preconditioner
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Hessian as preconditioner

Hf

[
2.0 0.0

0.0 2.0

]

0.2
0.4 0.6

0.8
1.0

1.
2

1.4

1.6

1.8

f (θ) = 2.0
2.0θ1 + 2.0

2.0θ2

κ = 1.00 (λmax = 2.0, λmin = 2.0)



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
2.5 0.0

0.0 2.0

]

0.2

0.
40.

6
0.

8

1.0

1.
2

1
.4

1.6

1.
8

f (θ) = 2.5
2.0θ1 + 2.0

2.0θ2

κ = 1.25 (λmax = 2.5, λmin = 2.0)



Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts
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Hessian as preconditioner
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Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;
I However, a model with 23 million parameters (i.e. ResNet-50), what

is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010
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Fisher InformationMatrix (FIM)
Going back to the Adam’s article:

From Adam’s original paper:
(. . . ) Like natural gradient descent (NGD) 14, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 15; (. . . )

I We now know what a preconditioner means;
I The missing ingredient now is the Fisher Information Matrix (also

known as FIM).

14Amari, “Natural Gradient Works Efficiently in Learning”, 1998
15Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013
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Fisher InformationMatrix (FIM)
The Fisher Information Matrix is the covariance of the score function
(gradients of the log-likelihood function) with expectation over the model’s

predictive distribution (pay attention to this detail).

Definition: Fisher Information Matrix

Fθ = E
y∼pθ(y|x)
x∼pdata

[∇θ log pθ(y|x)∇θ log pθ(y|x)ᵀ]

Where Fθ ∈ Rn×n.

We often approximate it using input samples (y is still
from model’s predictive distribution), as we don’t have access to pdata:

Fθ = 1
N

N∑
i=1
∇θ log pθ(y|xi)∇θ log pθ(y|xi)ᵀ
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Kullback-Leibler divergence
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Fisher InformationMatrix (FIM)

I We can parametrize the same distribution family on many di�erent
ways;

I Moving in the parameter space using the Euclidean distance as a
metric makes us tied to the particular parametrization;

I One interesting way is to move on the distribution space, to which
the KL divergence makes more sense;

I It turns out that the second-order Taylor approximation to the KL
divergence is the Fisher Information Matrix16;

I We won’t be talking here, but the Fisher has a strong connection to
the Hessian and the Generalized Gauss-Newton (GGN), please refer
to 17 if you are interested.

16For a full derivation please refer to: Ratli�, N. (2013). Information Geometry and
Natural Gradients.

17Martens, “New insights and perspectives on the natural gradient method”, 2014
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Section IV

; Natural Gradient <
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Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;
I It moves on the distribution space manifold, invariant with respect to

all di�erentiable and invertible transformations 19;
I Given that the FIM is the result of an outer-product, it is always PSD

(positive semide�nite matrix);
I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018
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Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;

I In a Riemannian space, the shortest path between two points
(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018
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Riemannian manifold

Source: Gallier J., (2020) Advanced Geometric

Methods in Computer Science. CIS 610, Spring 2018.

I A manifold is a collection of
points, where locally (but not
globally), is Euclidean;

I A metric induces an inner
product on the tangent space at
each point on the manifold;

I The metric on the statistical
manifold is unique, it is an
intrinsic geometry;

I In Euclidean space we don’t
care because the metric is
constant everywhere;
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Empirical Fisher
There is a lot of confusion22 about the Fisher Information Matrix 23.

I In some scenarios you will see people sampling y ∼ pdata too instead
of sampling from the model’s predictive distribution y ∼ pθ(y|x);

I This is called the Empirical Fisher, Empirical FIM or just EF:

F̃θ = 1
N

N∑
i=1
∇θ log pθ(yi|xi)∇θ log pθ(yi|xi)ᵀ

I It turns out that Adam is using the Empirical Fisher, and to make
things more confusing it is using the square root of it.

22I blame evil people who omit expectation quali�ers about where y is coming from.
23Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019
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Adam and theNatural Gradient Descent
Original Adam paper 24 claims that Adam is an approximation to the
natural gradient descent (diagonal of the FIM):

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, the approximation is only valid near optimality (why ?). The
exponent is also di�erent, since Adam is taking square root, it doesn’t
change direction of the descent (only stepsize) 25.

24Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015
25Staib et al., “Escaping saddle points with adaptive gradient methods”, 2019
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Empirical Fisher

Dataset

y = θx+ b

GD NGD EF

Source: Kunstner, F., Balles, L., & Hennig, P. Limitations of the Empirical Fisher Approximation for

Natural Gradient Descent. 2019. https:// arxiv.org/ abs/ 1905.12558.

I Vector �elds of the gradients conditioned using the FIM vs using the
EF are very di�erent;

I Are they close to each other close to the minima ?

https://arxiv.org/abs/1905.12558
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Source: Kunstner, F., Balles, L., & Hennig, P. Limitations of the Empirical Fisher Approximation for

Natural Gradient Descent. 2019. https:// arxiv.org/ abs/ 1905.12558.

I EF is a good approximation of the Fisher at the minimum if model is
well-speci�ed. Otherwise, even at the minimum and with a large amount of
samples, it can be a very poor approximation 26;

I Is EF just the non-central gradient covariance matrix, working as variance
reduction instead of curvature adaptation ?

26Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019

https://arxiv.org/abs/1905.12558
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The epsilon that might not be an epsilon
Many implementations use the epsilon to avoid division by zero:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, remember about the damping mechanism ? The ε can be seen as
setting a trust region radius 27.

27Choi et al., On empirical comparisons of optimizers for deep learning, 2019
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Fisher is a big Fisher
Computing the inverse of the diagonal Fisher is easy, but computing the
inverse of the “full” Fisher F−1 and the natural gradient F−1

θ ∇L(θ(t)), on
networks with millions of parameters, is just intractable.

I What about other structural approximations ? We don’t want to lose
all of the o�-diagonal structure;

I However, there are certain goals that we should be ideally try to
achieve: memory (remember we have F ∈ Rn×n) and computation
(we want to have an e�cient F−1);

I That is what Kronecker-Factored Approximate Curvature
(K-FAC) 28 proposes, an structured approximation to natural gradient
descent;

28Martens and Grosse, “Optimizing neural networks with Kronecker-factored approximate

curvature”, 2015
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Kronecker product

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.
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Fisher approximation

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.
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Fisher approximation

Source: Osawa, K. et al. Understanding Approximate Fisher Information for Fast Convergence of

Natural Gradient Descent in Wide Neural Networks, 2020.
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Kronecker Inversion
Kronecker product has a very interesting and critical property:

(A⊗B)−1 = A−1 ⊗B−1

This means that the inverse of the product is the same as the product of the
inverse of the operands. And this gives us a critical performance speed-up
because we just need to invert small factor matrices.
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Backpack in PyTorch
If you want to play with K-FAC on PyTorch, you can try using Backpack 29:

from torch import nn
from backpack import backpack, extend
from backpack.extensions import KFAC
from backpack.utils.examples import load_one_batch_mnist
from backpack.utils import kroneckers

X, y = load_one_batch_mnist(batch_size=512)

model = nn.Sequential(
nn.Flatten(),
nn.Linear(784, 10)

)

lossfunc = nn.CrossEntropyLoss()

model = extend(model)
lossfunc = extend(lossfunc)

loss = lossfunc(model(X), y)

with backpack(KFAC(mc_samples=1)):
loss.backward()

named_params = dict(model.named_parameters())
layer_weights = named_params["1.weight"]
# layer_weights.grad = [10, 784]

kfac_f1, kfac_f2 = layer_weights.kfac
# kfac_f1 = [10, 10]
# kfac_f2 = [784, 784]

mat = kroneckers.two_kfacs_to_mat(kfac_f1,
kfac_f2)

# mat = [7840, 7840]

29Dangel, Kunstner, and Hennig, “BackPACK: Packing more into backprop”, 2019
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KroneckerMatrices
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Some empirical results

Source: Johnson, M. et al. K-FAC and Natural Gradients, 2017.

https:// supercomputersfordl2017.github.io/ Presentations/ K-FAC.pdf .

https://supercomputersfordl2017.github.io/Presentations/K-FAC.pdf
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Section V
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Benchmarking optimizers
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Source: Schmidt, R. M., Schneider, F., & Hennig, P. (2020). Descending through a Crowded Valley –

Benchmarking Deep Learning Optimizers.

Lines in gray (—, smoothed by cubic splines for visual guidance only) show the relative improvement

for a certain tuning and schedule (compared to the one-shot tuning without schedule) for all 14
optimizers on all eight test problems. The median over all lines is plotted in orange (—) with the

shaded area indicating the area between the 25th and 75th percentile. 30

30Schmidt, Schneider, and Hennig, “Descending through a Crowded Valley – Benchmarking Deep

Learning Optimizers”, 2020
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To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?
I What are properties of the di�erent solutions that di�erent

optimization methods can achieve ?
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