
Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient-based Optimization
A short introduction to optimization in Deep Learning

Christian S. Perone
christian.perone@gmail.com

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Agenda

Introduction
Motivation
Probability framework
Taylor approximation

Gradient Descent
Gradient Descent
Momentum
Stochastic Gradient Descent

Adaptation and Preconditioning
Adam
Hessian
Preconditioning
Fisher Information Matrix

Natural Gradient
Natural Gradient
Riemannian manifold
Empirical Fisher
K-FAC

Thoughts

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

WhoAm I

Christian S. Perone
Machine Learning Engineer / Research
BSc Computer Science

(Brazil/Universidade de Passo Fundo)
MSc Deep Learning Biomed. Eng.

(Canada/Polytechnique Montreal/UdeM)
Blog

http://blog.christianperone.com

Open-source projects
https://github.com/perone

Twitter @tarantulae

http://blog.christianperone.com
https://github.com/perone
http://www.twitter.com/tarantulae

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Section I

; Introduction <

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Motivation
Mathematical optimization is the core of Machine Learning, without it we
wouldn’t be able to �nd the needle in the haystack of the parameter space.

I It materializes in Machine Learning by minimizing an
objective function such as a divergence or any function that
penalizes for mistakes of the model;

I We will talk here about local methods that are characterized by the
search of an optimal value within a neighboring set of parameter space;

I We have a huge variety of methods that were recently developed,
therefore this talk is by far from being a comprehensive
collection. I will focus on intuition and understanding, instead of
throwing algorithms.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Motivation
Mathematical optimization is the core of Machine Learning, without it we
wouldn’t be able to �nd the needle in the haystack of the parameter space.

I It materializes in Machine Learning by minimizing an
objective function such as a divergence or any function that
penalizes for mistakes of the model;

I We will talk here about local methods that are characterized by the
search of an optimal value within a neighboring set of parameter space;

I We have a huge variety of methods that were recently developed,
therefore this talk is by far from being a comprehensive
collection. I will focus on intuition and understanding, instead of
throwing algorithms.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Motivation
Mathematical optimization is the core of Machine Learning, without it we
wouldn’t be able to �nd the needle in the haystack of the parameter space.

I It materializes in Machine Learning by minimizing an
objective function such as a divergence or any function that
penalizes for mistakes of the model;

I We will talk here about local methods that are characterized by the
search of an optimal value within a neighboring set of parameter space;

I We have a huge variety of methods that were recently developed,
therefore this talk is by far from being a comprehensive
collection. I will focus on intuition and understanding, instead of
throwing algorithms.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Motivation
Mathematical optimization is the core of Machine Learning, without it we
wouldn’t be able to �nd the needle in the haystack of the parameter space.

I It materializes in Machine Learning by minimizing an
objective function such as a divergence or any function that
penalizes for mistakes of the model;

I We will talk here about local methods that are characterized by the
search of an optimal value within a neighboring set of parameter space;

I We have a huge variety of methods that were recently developed,
therefore this talk is by far from being a comprehensive
collection. I will focus on intuition and understanding, instead of
throwing algorithms.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I On a supervised setting, we want to �nd a function or a model fθ(·)
that describes the relationship between a random feature vector x and
the label target vector y. We assume a joint distribution pdata(x,y);

I We start by de�ning a loss functionL, evaluated asL(fθ(x), y) that
gives us a penalization for the di�erence between predictions fθ(x)
and the true label y;

I Now, taking the expectation of the loss we have our riskR:

Definition: Risk

R(f) = Ex,y∼pdata [L(fθ(x),y)︸ ︷︷ ︸
Loss

] =
∫
L(fθ(x),y) dpdata(x,y),

that we want to minimize.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I On a supervised setting, we want to �nd a function or a model fθ(·)
that describes the relationship between a random feature vector x and
the label target vector y. We assume a joint distribution pdata(x,y);

I We start by de�ning a loss functionL, evaluated asL(fθ(x), y) that
gives us a penalization for the di�erence between predictions fθ(x)
and the true label y;

I Now, taking the expectation of the loss we have our riskR:

Definition: Risk

R(f) = Ex,y∼pdata [L(fθ(x),y)︸ ︷︷ ︸
Loss

] =
∫
L(fθ(x),y) dpdata(x,y),

that we want to minimize.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I On a supervised setting, we want to �nd a function or a model fθ(·)
that describes the relationship between a random feature vector x and
the label target vector y. We assume a joint distribution pdata(x,y);

I We start by de�ning a loss functionL, evaluated asL(fθ(x), y) that
gives us a penalization for the di�erence between predictions fθ(x)
and the true label y;

I Now, taking the expectation of the loss we have our riskR:

Definition: Risk

R(f) = Ex,y∼pdata [L(fθ(x),y)︸ ︷︷ ︸
Loss

] =
∫
L(fθ(x),y) dpdata(x,y),

that we want to minimize.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I However, we don’t know pdata(x,y), we only have access to a sample
training setD = (xi, yi) ∼ pdata;

I Therefore, we can approximate the risk with the empirical risk:

Definition: Empirical Risk

Remp(f) = 1
n

n∑
i=1

L(fθ(xi), yi)

I The Empirical Risk Minimization (ERM) principle says that our
learning algorithm should minimize the empirical risk;

I The MLE (Maximum Likelihood Estimation) can be posed as a
special case of ERM where the loss function is the negative
log-likelihood.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I However, we don’t know pdata(x,y), we only have access to a sample
training setD = (xi, yi) ∼ pdata;

I Therefore, we can approximate the risk with the empirical risk:

Definition: Empirical Risk

Remp(f) = 1
n

n∑
i=1

L(fθ(xi), yi)

I The Empirical Risk Minimization (ERM) principle says that our
learning algorithm should minimize the empirical risk;

I The MLE (Maximum Likelihood Estimation) can be posed as a
special case of ERM where the loss function is the negative
log-likelihood.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I However, we don’t know pdata(x,y), we only have access to a sample
training setD = (xi, yi) ∼ pdata;

I Therefore, we can approximate the risk with the empirical risk:

Definition: Empirical Risk

Remp(f) = 1
n

n∑
i=1

L(fθ(xi), yi)

I The Empirical Risk Minimization (ERM) principle says that our
learning algorithm should minimize the empirical risk;

I The MLE (Maximum Likelihood Estimation) can be posed as a
special case of ERM where the loss function is the negative
log-likelihood.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical RiskMinimization (ERM)

I However, we don’t know pdata(x,y), we only have access to a sample
training setD = (xi, yi) ∼ pdata;

I Therefore, we can approximate the risk with the empirical risk:

Definition: Empirical Risk

Remp(f) = 1
n

n∑
i=1

L(fθ(xi), yi)

I The Empirical Risk Minimization (ERM) principle says that our
learning algorithm should minimize the empirical risk;

I The MLE (Maximum Likelihood Estimation) can be posed as a
special case of ERM where the loss function is the negative
log-likelihood.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Maximum Likelihood Estimation (MLE)
Under the ERM framework we can describe the MLE cost function J(·) as:

J(θ) = Ex,y∼p̂data − log pθ(y | x)︸ ︷︷ ︸
log-likelihood

where we de�ne the cost as the expectation under the empirical distribution
p̂data, as we only have access to a sample training setD = (xi, yi) ∼ pdata.

I We might be interested in let’s say predicting a statistic of the
distribution, such as the mean of y using the predictor fθ(x)

I Our interest here in terms of optimization is:

θ∗ = arg min
θ

J(θ),where θ ∈ Rn

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Maximum Likelihood Estimation (MLE)
Under the ERM framework we can describe the MLE cost function J(·) as:

J(θ) = Ex,y∼p̂data − log pθ(y | x)︸ ︷︷ ︸
log-likelihood

where we de�ne the cost as the expectation under the empirical distribution
p̂data, as we only have access to a sample training setD = (xi, yi) ∼ pdata.

I We might be interested in let’s say predicting a statistic of the
distribution, such as the mean of y using the predictor fθ(x)

I Our interest here in terms of optimization is:

θ∗ = arg min
θ

J(θ),where θ ∈ Rn

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The global optimum

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

20

40

60

80

100

J(
)

*

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;

I This theorem is very powerful as it allows us to approximate any
di�erentiable (and twice di�erentiable) function;

I The∇2f(·) is also called the Hessian, or Hf . We will talk more
about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;

I The∇2f(·) is also called the Hessian, or Hf . We will talk more
about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;
I The∇2f(·) is also called the Hessian, or Hf . We will talk more

about it later;

I We will understand the deep connection of this approximation with
Gradient Descent.

1Taylor’s theorem gives an approximation of a k-times di�erentiable function around
a given point by a polynomial of degree k. We’re using only up to second-order here.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation
Let’s talk about a powerful calculus tool called Taylor approximation:

I Taylor approximation is based on the Taylor theorem1:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

where we want an approximation of the function at the point θ0;
I This theorem is very powerful as it allows us to approximate any

di�erentiable (and twice di�erentiable) function;
I The∇2f(·) is also called the Hessian, or Hf . We will talk more

about it later;
I We will understand the deep connection of this approximation with

Gradient Descent.
1Taylor’s theorem gives an approximation of a k-times di�erentiable function around

a given point by a polynomial of degree k. We’re using only up to second-order here.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation in Jax
from jax import grad

def taylor_first_order(θ, θ0):
return f(θ0) + grad(f)(θ0)*(θ - θ0)

def taylor_second_order(θ, θ0):
d1 = taylor_first_order(θ, θ0)
d2 = 1./2. * grad(grad(f))(θ0) * (θ - a)**2
return d1 + d2

>>> taylor_first_order(6.01, 6.0)
33.421864
>>> taylor_second_order(6.01, 6.0)
33.422104
>>> taylor_first_order(6.5, 6.0)
44.0067
>>> taylor_second_order(6.5, 6.0)
44.60597

Do not use greek symbols on your Python code, your colleagues will curse you.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Taylor approximation in Jax
from jax import grad

def taylor_first_order(θ, θ0):
return f(θ0) + grad(f)(θ0)*(θ - θ0)

def taylor_second_order(θ, θ0):
d1 = taylor_first_order(θ, θ0)
d2 = 1./2. * grad(grad(f))(θ0) * (θ - a)**2
return d1 + d2

>>> taylor_first_order(6.01, 6.0)
33.421864
>>> taylor_second_order(6.01, 6.0)
33.422104
>>> taylor_first_order(6.5, 6.0)
44.0067
>>> taylor_second_order(6.5, 6.0)
44.60597

Do not use greek symbols on your Python code, your colleagues will curse you.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Linear approximation plane

Source: Tangent Planes and Linear Approximations. Calculus Volume 3.

Rice University. 2020. Creative Commons Attribution 4.0 International License.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Local approximation and second-order
I Let’s now think about that second-order term:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

I If we do a small step from θ0, what happens with the second-term ?

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Local approximation and second-order
I Let’s now think about that second-order term:

h(θ) = f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

+ 1
2∇

2f(θ0)(θ − θ0)2︸ ︷︷ ︸
second-order

,

I If we do a small step from θ0, what happens with the second-term ?

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
20

0

20

40

60

80

100

120

J(
)

J()
First-order
Second-order

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The steepest descent

I Even if f(·) is very complex, locally it is simple, and we can use a
simple function to approximate it, a linear function:

h(θ) ≈ f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

I This is also called linearization;

I It is already apparent what we need now. How can we guarantee,
locally, that we can always minimize the function (reduce the loss) ?

I We can just follow the slope (negative) of the approximation that is
given by−∇f(θ0);

I No twice di�erentiability requirement, less computational resources;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The steepest descent

I Even if f(·) is very complex, locally it is simple, and we can use a
simple function to approximate it, a linear function:

h(θ) ≈ f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

I This is also called linearization;
I It is already apparent what we need now. How can we guarantee,

locally, that we can always minimize the function (reduce the loss) ?

I We can just follow the slope (negative) of the approximation that is
given by−∇f(θ0);

I No twice di�erentiability requirement, less computational resources;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The steepest descent

I Even if f(·) is very complex, locally it is simple, and we can use a
simple function to approximate it, a linear function:

h(θ) ≈ f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

I This is also called linearization;
I It is already apparent what we need now. How can we guarantee,

locally, that we can always minimize the function (reduce the loss) ?
I We can just follow the slope (negative) of the approximation that is

given by−∇f(θ0);

I No twice di�erentiability requirement, less computational resources;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The steepest descent

I Even if f(·) is very complex, locally it is simple, and we can use a
simple function to approximate it, a linear function:

h(θ) ≈ f(θ0) +∇f(θ0)(θ − θ0)︸ ︷︷ ︸
�rst-order

I This is also called linearization;
I It is already apparent what we need now. How can we guarantee,

locally, that we can always minimize the function (reduce the loss) ?
I We can just follow the slope (negative) of the approximation that is

given by−∇f(θ0);
I No twice di�erentiability requirement, less computational resources;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Section II

; Gradient Descent <

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent

Algorithm The general gradient descent algorithm.

Input: initial weights θ(0), iterations T , learning rate η
Output: �nal weights θ(T)

1. for t = 0 to T − 1
2. compute∇L(θ(t))
3. θ(t+1) := θ(t) − η∇L(θ(t))
4. return θ(T)

The important part here is the iterative rule:

θ(t+1) = θ(t) − η∇L(θ(t))︸ ︷︷ ︸
How much we move

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent

Algorithm The general gradient descent algorithm.

Input: initial weights θ(0), iterations T , learning rate η
Output: �nal weights θ(T)

1. for t = 0 to T − 1
2. compute∇L(θ(t))
3. θ(t+1) := θ(t) − η∇L(θ(t))
4. return θ(T)

The important part here is the iterative rule:

θ(t+1) = θ(t) − η∇L(θ(t))︸ ︷︷ ︸
How much we move

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Gradient Descent - Loss surface

−4 −2 0 2 4−4
−2

0
2

4−1

0

1

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.00

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.06

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.13

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.19

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.25

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.31

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.38

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.44

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.50

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.56

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.63

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.69

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.75

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.81

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.88

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 0.94

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

2 0 2
w

0

2

4

6

8

g(w)

= 1.00

0 1 2 3 4 5
iteration

0

2

4

6

8

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

4 2 0 2 4
w

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

g(w)

= 1.06

0 1 2 3 4 5
iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

5 0 5
w

0

10

20

30

40

50

60

g(w)

= 1.13

0 1 2 3 4 5
iteration

0

10

20

30

40

50

60

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

10 5 0 5 10
w

0

20

40

60

80

100

120

140

g(w)

= 1.19

0 1 2 3 4 5
iteration

0

20

40

60

80

100

120

140

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

20 10 0 10 20
w

0

50

100

150

200

250

300

350

g(w)

= 1.25

0 1 2 3 4 5
iteration

0

50

100

150

200

250

300

350

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

20 0 20
w

0

100

200

300

400

500

600

700

800

g(w)

= 1.31

0 1 2 3 4 5
iteration

0

100

200

300

400

500

600

700

800

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

40 20 0 20 40
w

0

250

500

750

1000

1250

1500

1750

g(w)

= 1.38

0 1 2 3 4 5
iteration

0

250

500

750

1000

1250

1500

1750

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

50 25 0 25 50
w

0

500

1000

1500

2000

2500

3000

3500

g(w)

= 1.44

0 1 2 3 4 5
iteration

0

500

1000

1500

2000

2500

3000

3500

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Learning Rate

50 0 50
w

0

1000

2000

3000

4000

5000

6000

g(w)

= 1.50

0 1 2 3 4 5
iteration

0

1000

2000

3000

4000

5000

6000

g(w)

Source: Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020. Creative Commons

Attribution 4.0 International License. Used with permission from the authors.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

High curvatures
Gradient descent can su�er on some pathological curvatures and cause a lot
of oscillations:

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt and Reza Borhani. 2020.

Creative Commons Attribution 4.0 International License.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
Momentum is a method to damp out oscillations:
Vanilla gradient descent:

θ(t+1) = θ(t) − η∇L(θ(t))

Momentum:

V (t+1) = β︸︷︷︸
Constant

V (t) +∇L(θ(t))

θ(t+1) = θ(t) − η V (t+1)︸ ︷︷ ︸
Momentum bu�er

I Momentum works by acceleration and smoothing, it makes the
trajectories to take more time to react to changes in the loss landscape;

I Note that with β = 0 we recover vanilla Gradient descent;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
Momentum is a method to damp out oscillations:
Vanilla gradient descent:

θ(t+1) = θ(t) − η∇L(θ(t))

Momentum:

V (t+1) = β︸︷︷︸
Constant

V (t) +∇L(θ(t))

θ(t+1) = θ(t) − η V (t+1)︸ ︷︷ ︸
Momentum bu�er

I Momentum works by acceleration and smoothing, it makes the
trajectories to take more time to react to changes in the loss landscape;

I Note that with β = 0 we recover vanilla Gradient descent;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
Momentum is a method to damp out oscillations:
Vanilla gradient descent:

θ(t+1) = θ(t) − η∇L(θ(t))

Momentum:

V (t+1) = β︸︷︷︸
Constant

V (t) +∇L(θ(t))

θ(t+1) = θ(t) − η V (t+1)︸ ︷︷ ︸
Momentum bu�er

I Momentum works by acceleration and smoothing, it makes the
trajectories to take more time to react to changes in the loss landscape;

I Note that with β = 0 we recover vanilla Gradient descent;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
Momentum is a method to damp out oscillations:
Vanilla gradient descent:

θ(t+1) = θ(t) − η∇L(θ(t))

Momentum:

V (t+1) = β︸︷︷︸
Constant

V (t) +∇L(θ(t))

θ(t+1) = θ(t) − η V (t+1)︸ ︷︷ ︸
Momentum bu�er

I Momentum works by acceleration and smoothing, it makes the
trajectories to take more time to react to changes in the loss landscape;

I Note that with β = 0 we recover vanilla Gradient descent;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum
β = 0.0

β = 0.1

β = 0.7

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

0 2 4 6 8 10
0

2

1

0

1

1

Source: Code adapted from Machine Learning Refined. Jeremy Watt et

al. 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Momentum

Pause for a quick demo from Lili Jiang, from:
https://github.com/lilipads/gradient_descent_viz

https://github.com/lilipads/gradient_descent_viz

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Stochastic Gradient Descent (SGD)
It turns out that we don’t quite need to compute the gradients∇L(θ) over
the whole dataset at every iteration of Gradient descent:

θ(t+1) = θ(t) − η ∇Li(θ(t))︸ ︷︷ ︸
Individual samples

where we do random sampling (or not, we can stratify too, in practice it can
lead to better results) of individual samples i at every step.

I Much more e�cient (don’t have to compute gradient for entire
dataset);

I Noise (can be bene�cial);
I Lots of redundancy on real datasets;
I Highly correlation at early steps (similar gradients SGD vs GD);

SGD can be traced back to 1950s work on the Robbins–Monro algorithm 3.

3Robbins and Monro, “A Stochastic Approximation Method”, 1951

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Stochastic Gradient Descent (SGD)
It turns out that we don’t quite need to compute the gradients∇L(θ) over
the whole dataset at every iteration of Gradient descent:

θ(t+1) = θ(t) − η ∇Li(θ(t))︸ ︷︷ ︸
Individual samples

where we do random sampling (or not, we can stratify too, in practice it can
lead to better results) of individual samples i at every step.

I Much more e�cient (don’t have to compute gradient for entire
dataset);

I Noise (can be bene�cial);
I Lots of redundancy on real datasets;
I Highly correlation at early steps (similar gradients SGD vs GD);

SGD can be traced back to 1950s work on the Robbins–Monro algorithm 3.
3Robbins and Monro, “A Stochastic Approximation Method”, 1951

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Graphics Processing Unit (GPUs)
Most of the operations in Machine Learning ends up being lowered to
GEMM (General Matrix Multiplication) and MAC
(Multiply–accumulate operation) operations.
To leverage these massively parallel engines, we need to provide enough data
to take advantage of the parallelization potential.

Source: Standard GPU memory hierarchy. By Giacomo Parigi.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Mini-batch SGD
That’s why using mini-batches instead of individual samples on SGD is a
perfect marriage of having better gradient estimates together with improved
parallelization:

∇̃L(θ(t)) = 1
|B|︸︷︷︸

Batch size

∑
i∈B
∇Li(θ(t))

θ(t+1) = θ(t) − η ∇̃L(θ(t))︸ ︷︷ ︸
Estimated gradients

If we do random sampling, then:

E[∇̃L(θ(t))] = ∇L(θ)︸ ︷︷ ︸
Unbiased estimate

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Mini-batch SGD
That’s why using mini-batches instead of individual samples on SGD is a
perfect marriage of having better gradient estimates together with improved
parallelization:

∇̃L(θ(t)) = 1
|B|︸︷︷︸

Batch size

∑
i∈B
∇Li(θ(t))

θ(t+1) = θ(t) − η ∇̃L(θ(t))︸ ︷︷ ︸
Estimated gradients

If we do random sampling, then:

E[∇̃L(θ(t))] = ∇L(θ)︸ ︷︷ ︸
Unbiased estimate

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Section III

; Adaptation and
Preconditioning <

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
There are many adaptive methods, we will focus on one of the most
frequently used in Deep Learning, the Adaptive Moment Estimation

4, also
called Adam.

I Single learning rate for all parameters of the network doesn’t seem to
be enough to cope with the growing complexity of Deep Learning
architectures;

I What we can do is often bounded by what we can optimize, therefore
better optimization techniques that explores structure are paramount;

I Most of the adaptive methods adapt to some kind of structure or
curvature of the optimization landscape;

I Many of these algorithms are still not well understood, lots of folklore
in the �eld;

I Will try to focus on building intuition from the original algorithm.

4Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)

Algorithm g2
t = gt � gt. Good defaults: α = 0.001, β1 = 0.9, β2 = 0.999 and

ε = 10−8. βt1 and βt2 are β1 and β2 to the power t.

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector, α: Stepsize
m0 ← 0 (Initialize 1st moment vector)
v0 ← 0 (Initialize 2nd moment vector)
t← 0 (Initialize timestep)
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased �rst moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2

t (Update biased second raw moment estimate)
m̂t ← mt/(1− βt1) (Compute bias-corrected �rst moment estimate)
v̂t ← vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
Lots of things going on here, let’s focus on how moments are being
computed and neglect bias correction and initialization:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

And the parameter updates:

θt ← θt−1 − α ·
m̂t√
v̂t + ε

I Do you recognizemt ?
I What happens when the uncentered variance grows ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

AdaptiveMoment Estimation (Adam)
Lots of things going on here, let’s focus on how moments are being
computed and neglect bias correction and initialization:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

And the parameter updates:

θt ← θt−1 − α ·
m̂t√
v̂t + ε

I Do you recognizemt ?
I What happens when the uncentered variance grows ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The good, the bad, and theHessian

I The convergence rate of Gradient descent is deeply connected to the
curvature of the landscape it is trying to optimize;

I The Hessian matrix Hf carries information about the curvature,
therefore we usually use it understand problems or even make them
better conditioned;

I The Hf is often very costly to compute for real-life problems,
therefore much of the work rely on approximating it or computing
information about it without having to materialize the entire matrix;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The good, the bad, and theHessian

I The convergence rate of Gradient descent is deeply connected to the
curvature of the landscape it is trying to optimize;

I The Hessian matrix Hf carries information about the curvature,
therefore we usually use it understand problems or even make them
better conditioned;

I The Hf is often very costly to compute for real-life problems,
therefore much of the work rely on approximating it or computing
information about it without having to materialize the entire matrix;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The good, the bad, and theHessian

I The convergence rate of Gradient descent is deeply connected to the
curvature of the landscape it is trying to optimize;

I The Hessian matrix Hf carries information about the curvature,
therefore we usually use it understand problems or even make them
better conditioned;

I The Hf is often very costly to compute for real-life problems,
therefore much of the work rely on approximating it or computing
information about it without having to materialize the entire matrix;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian
The Hf is a square matrix of 2nd-order partial derivatives. Let’s compute
the Hf of f(x, y) = x2y + xy3, starting with �rst-order:

∂f

∂x
= 2xy + y3 ,

∂f

∂y
= x2 + 3xy2

Second order
∂2f

∂x2 = 2y ,
∂2f

∂y∂x
2x+ 3y2 ,

∂2f

∂x∂y
= 2x+ 3y2 ,

∂2f

∂y2 = 6xy

Hessian

Hf =

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =
[

2y 2x+ 3y2

2x+ 3y2 6xy

]

Note that the Hf can be constant and not depend on variables or depend only on
some of them. We will see this case later.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian
The Hf is a square matrix of 2nd-order partial derivatives. Let’s compute
the Hf of f(x, y) = x2y + xy3, starting with �rst-order:

∂f

∂x
= 2xy + y3 ,

∂f

∂y
= x2 + 3xy2

Second order
∂2f

∂x2 = 2y ,
∂2f

∂y∂x
2x+ 3y2 ,

∂2f

∂x∂y
= 2x+ 3y2 ,

∂2f

∂y2 = 6xy

Hessian

Hf =

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =
[

2y 2x+ 3y2

2x+ 3y2 6xy

]

Note that the Hf can be constant and not depend on variables or depend only on
some of them. We will see this case later.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian
The Hf is a square matrix of 2nd-order partial derivatives. Let’s compute
the Hf of f(x, y) = x2y + xy3, starting with �rst-order:

∂f

∂x
= 2xy + y3 ,

∂f

∂y
= x2 + 3xy2

Second order
∂2f

∂x2 = 2y ,
∂2f

∂y∂x
2x+ 3y2 ,

∂2f

∂x∂y
= 2x+ 3y2 ,

∂2f

∂y2 = 6xy

Hessian

Hf =

 ∂2f
∂x2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y2

 =
[

2y 2x+ 3y2

2x+ 3y2 6xy

]

Note that the Hf can be constant and not depend on variables or depend only on
some of them. We will see this case later.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian Eigenvalues

All positive eigenvalues
(positive de�nite)

−2 −1 0 1 2 −2

0

2
0

5

x
y

All negative eigenvalues
(negative de�nite)

−2 −1 0 1 2 −2

0

2
−5

0

x
y

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian Eigenvalues

All positive eigenvalues
(positive de�nite)

−2 −1 0 1 2 −2

0

2
0

5

x
y

All negative eigenvalues
(negative de�nite)

−2 −1 0 1 2 −2

0

2
−5

0

x
y

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber
The Condition number, also de�ned as κ, is the ratio of maximum and
minimum eigenvalues (λmax and λmin) of the Hessian Hf :

κ = λmax

λmin

I When κ is high we say that the problem is ill-conditioned;
I Steepest descent convergence rate is slow for ill-conditioned problems;
I Let’s understand it on a quadratic problem to gain intuition.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber
The Condition number, also de�ned as κ, is the ratio of maximum and
minimum eigenvalues (λmax and λmin) of the Hessian Hf :

κ = λmax

λmin

I When κ is high we say that the problem is ill-conditioned;

I Steepest descent convergence rate is slow for ill-conditioned problems;
I Let’s understand it on a quadratic problem to gain intuition.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber
The Condition number, also de�ned as κ, is the ratio of maximum and
minimum eigenvalues (λmax and λmin) of the Hessian Hf :

κ = λmax

λmin

I When κ is high we say that the problem is ill-conditioned;
I Steepest descent convergence rate is slow for ill-conditioned problems;

I Let’s understand it on a quadratic problem to gain intuition.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber
The Condition number, also de�ned as κ, is the ratio of maximum and
minimum eigenvalues (λmax and λmin) of the Hessian Hf :

κ = λmax

λmin

I When κ is high we say that the problem is ill-conditioned;
I Steepest descent convergence rate is slow for ill-conditioned problems;
I Let’s understand it on a quadratic problem to gain intuition.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
1.0 0.0

0.0 2.0

]

0.2

0.4

0.6

0.8

1.0

1.21.4

1.6

1.8

f (θ) = 1.0
2.0θ1 + 2.0

2.0θ2

κ = 2.00 (λmax = 2.0, λmin = 1.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
1.5 0.0

0.0 2.0

]

0.2

0.4

0.6
0.8

1.0

1.2

1.4

1.6

1.
8

f (θ) = 1.5
2.0θ1 + 2.0

2.0θ2

κ = 1.33 (λmax = 2.0, λmin = 1.5)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
2.0 0.0

0.0 2.0

]

0.2
0.4 0.6

0.8
1.0

1.
2

1.4

1.6

1.8

f (θ) = 2.0
2.0θ1 + 2.0

2.0θ2

κ = 1.00 (λmax = 2.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
2.5 0.0

0.0 2.0

]

0.2

0.
40.

6
0.

8

1.0

1.
2

1
.4

1.6

1.
8

f (θ) = 2.5
2.0θ1 + 2.0

2.0θ2

κ = 1.25 (λmax = 2.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
3.0 0.0

0.0 2.0

]

0.
2

0.4

0.6

0.8

1.
0

1
.21.4

1.
6

1
.8

f (θ) = 3.0
2.0θ1 + 2.0

2.0θ2

κ = 1.50 (λmax = 3.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
3.5 0.0

0.0 2.0

]

0.
2

0.
4

0.6

0.
8

1.0

1
.2

1.
4

1.6

1.
8

f (θ) = 3.5
2.0θ1 + 2.0

2.0θ2

κ = 1.75 (λmax = 3.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
4.0 0.0

0.0 2.0

]

0
.2

0.
4

0.
6

0
.8

1
.0

1.2

1
.4

1.6

1.
8

f (θ) = 4.0
2.0θ1 + 2.0

2.0θ2

κ = 2.00 (λmax = 4.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
4.5 0.0

0.0 2.0

]

0.
20.4

0
.6

0
.8

1.0

1
.2

1.
4

1
.6

1
.8

f (θ) = 4.5
2.0θ1 + 2.0

2.0θ2

κ = 2.25 (λmax = 4.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
5.0 0.0

0.0 2.0

]

0
.2

0
.4

0
.6

0.
8

1
.01

.2

1
.4

1
.6

1.8

f (θ) = 5.0
2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

ConditionNumber

Hf

[
5.5 0.0

0.0 2.0

]

0.
2

0.
4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1.8

f (θ) = 5.5
2.0θ1 + 2.0

2.0θ2

κ = 2.75 (λmax = 5.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian eigenvalue spectral density (ESD)

1 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

Ei
ge

nv
al

ue

Cifar-10 ResNet20

1 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

Ei
ge

nv
al

ue

Cifar-10 ResNet BN20

1 25 50 75 100 125 150 175
Epoch

0

200

400

600

800

1000

1200

Ei
ge

nv
al

ue

Cifar-10 ResNet Res20

Source: Yao, Z., Gholami, A., Keutzer, K., & Mahoney, M. W. (2019, December 15). PYHESSIAN:

Neural networks through the lens of the hessian.

ResNet with depth 20 trained on Cifar-10. ResNet_BN is the ResNet
without Batch Normalization and the ResNet_Res is without the residual
connections. In 6, they also show that the distribution seem to composed of
two parts: the bulk around zero, and the edges scattered away from zero.

6Sagun, Leon Bottou, and LeCun, “Eigenvalues of the Hessian in Deep Learning: Singularity and

Beyond”, 2016

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

From Adam’s original paper:
(. . .) Like natural gradient descent (NGD) 7, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 8; (. . .)

I Preconditioning can be viewed as a change in the geometry;

I It can help with poorly conditioned problems;
I We will talk about the Fisher Information Matrix (FIM) later;

7Amari, “Natural Gradient Works Efficiently in Learning”, 1998
8Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

From Adam’s original paper:
(. . .) Like natural gradient descent (NGD) 7, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 8; (. . .)

I Preconditioning can be viewed as a change in the geometry;
I It can help with poorly conditioned problems;

I We will talk about the Fisher Information Matrix (FIM) later;

7Amari, “Natural Gradient Works Efficiently in Learning”, 1998
8Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

From Adam’s original paper:
(. . .) Like natural gradient descent (NGD) 7, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 8; (. . .)

I Preconditioning can be viewed as a change in the geometry;
I It can help with poorly conditioned problems;
I We will talk about the Fisher Information Matrix (FIM) later;

7Amari, “Natural Gradient Works Efficiently in Learning”, 1998
8Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − η∇L(θ(t))

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − η∇L(θ(t))︸ ︷︷ ︸
Gradients

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − η P︸︷︷︸
Preconditioner

∇L(θ(t))︸ ︷︷ ︸
Gradients

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − η I︸︷︷︸
Identity

∇L(θ(t))︸ ︷︷ ︸
Gradients

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − η

1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

Identity

∇L(θ(t))︸ ︷︷ ︸
Gradients

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − H−1
L︸ ︷︷ ︸

Hessian

∇L(θ(t))︸ ︷︷ ︸
Gradients

I Can be interpreted as an iterative minimization of the quadratic
approximation, we’re using a 2nd-order term here, remember the
Taylor approximation ?

The superscript t was omitted from the H−1
L for clarity.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

θ(t+1) = θ(t) − (HL + λI)−1︸ ︷︷ ︸
Damped Hessian

∇L(θ(t))︸ ︷︷ ︸
Gradients

The superscript t was omitted from the HL for clarity.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

Hf

[
5.0 0.0
0.0 2.0

]
0

.2

0
.4

0
.6

0.
8

1
.01

.2

1
.4

1
.6

1.8

f (θ) = 5.0
2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Let’s think about what the
preconditioner is doing in this
situation, we have a point
θ ∈ R2 at θ = (0.5, 0.5) and
we have that:

∇f(θ) = (2.5, 1.0)

Hf =
[
5.0 0.0
0.0 2.0

]
θ −H−1

L ∇f(θ) = (0., 0.)
θ −∇f(θ) = (−2.,−0.5)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

Hf

[
5.0 0.0
0.0 2.0

]
0

.2

0
.4

0
.6

0.
8

1
.01

.2

1
.4

1
.6

1.8

f (θ) = 5.0
2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Let’s think about what the
preconditioner is doing in this
situation, we have a point
θ ∈ R2 at θ = (0.5, 0.5) and
we have that:

∇f(θ) = (2.5, 1.0)

Hf =
[
5.0 0.0
0.0 2.0

]
θ −H−1

L ∇f(θ) = (0., 0.)
θ −∇f(θ) = (−2.,−0.5)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Preconditioning

Hf

[
5.0 0.0
0.0 2.0

]
0

.2

0
.4

0
.6

0.
8

1
.01

.2

1
.4

1
.6

1.8

f (θ) = 5.0
2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Let’s think about what the
preconditioner is doing in this
situation, we have a point
θ ∈ R2 at θ = (0.5, 0.5) and
we have that:

∇f(θ) = (2.5, 1.0)

Hf =
[
5.0 0.0
0.0 2.0

]
θ −H−1

L ∇f(θ) = (0., 0.)
θ −∇f(θ) = (−2.,−0.5)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
1.0 0.0

0.0 2.0

]

0.2

0.4

0.6

0.8

1.0

1.21.4

1.6

1.8

f (θ) = 1.0
2.0θ1 + 2.0

2.0θ2

κ = 2.00 (λmax = 2.0, λmin = 1.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
1.5 0.0

0.0 2.0

]

0.2

0.4

0.6
0.8

1.0

1.2

1.4

1.6

1.
8

f (θ) = 1.5
2.0θ1 + 2.0

2.0θ2

κ = 1.33 (λmax = 2.0, λmin = 1.5)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
2.0 0.0

0.0 2.0

]

0.2
0.4 0.6

0.8
1.0

1.
2

1.4

1.6

1.8

f (θ) = 2.0
2.0θ1 + 2.0

2.0θ2

κ = 1.00 (λmax = 2.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
2.5 0.0

0.0 2.0

]

0.2

0.
40.

6
0.

8

1.0

1.
2

1
.4

1.6

1.
8

f (θ) = 2.5
2.0θ1 + 2.0

2.0θ2

κ = 1.25 (λmax = 2.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
3.0 0.0

0.0 2.0

]

0.
2

0.4

0.6

0.8

1.
0

1
.21.4

1.
6

1
.8

f (θ) = 3.0
2.0θ1 + 2.0

2.0θ2

κ = 1.50 (λmax = 3.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
3.5 0.0

0.0 2.0

]

0.
2

0.
4

0.6

0.
8

1.0

1
.2

1.
4

1.6

1.
8

f (θ) = 3.5
2.0θ1 + 2.0

2.0θ2

κ = 1.75 (λmax = 3.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
4.0 0.0

0.0 2.0

]

0
.2

0.
4

0.
6

0
.8

1
.0

1.2

1
.4

1.6

1.
8

f (θ) = 4.0
2.0θ1 + 2.0

2.0θ2

κ = 2.00 (λmax = 4.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
4.5 0.0

0.0 2.0

]

0.
20.4

0
.6

0
.8

1.0

1
.2

1.
4

1
.6

1
.8

f (θ) = 4.5
2.0θ1 + 2.0

2.0θ2

κ = 2.25 (λmax = 4.5, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Hessian as preconditioner

Hf

[
5.0 0.0

0.0 2.0

]

0
.2

0
.4

0
.6

0.
8

1
.01

.2

1
.4

1
.6

1.8

f (θ) = 5.0
2.0θ1 + 2.0

2.0θ2

κ = 2.50 (λmax = 5.0, λmin = 2.0)

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;
I However, a model with 23 million parameters (i.e. ResNet-50), what

is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;

I However, a model with 23 million parameters (i.e. ResNet-50), what
is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;
I However, a model with 23 million parameters (i.e. ResNet-50), what

is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;
I However, a model with 23 million parameters (i.e. ResNet-50), what

is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Difficulties of theHessian preconditioning

I Using the Hessian as preconditioner is the basis of the Newton’s
method;

I Invariant to a�ne transformations;
I However, a model with 23 million parameters (i.e. ResNet-50), what

is the space complexity to store the Hf and the computational
complexity to invert it ?

I Di�cult on non-convex problems, not always invertible, attracted by
saddle points 11;

I Among other reasons, you now understand all the e�orts into
Hessian approximations 12, alternative curvature matrices and
hessian-free optimization 13.

11Dauphin et al., “Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization”, 2014
12Yao et al., PYHESSIAN: Neural networks through the lens of the hessian, 2019
13Martens, Deep learning via Hessian-free optimization, 2010

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Saddle points

−4 −2 0 2 4−4
−2

0
2

4−10

0

10

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)
Going back to the Adam’s article:

From Adam’s original paper:
(. . .) Like natural gradient descent (NGD) 14, Adam employs a preconditioner
that adapts to the geometry of the data, since v̂t is an approximation to the
diagonal of the Fisher information matrix 15; (. . .)

I We now know what a preconditioner means;
I The missing ingredient now is the Fisher Information Matrix (also

known as FIM).

14Amari, “Natural Gradient Works Efficiently in Learning”, 1998
15Pascanu and Bengio, “Revisiting Natural Gradient for Deep Networks”, 2013

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)
The Fisher Information Matrix is the covariance of the score function
(gradients of the log-likelihood function) with expectation over the model’s

predictive distribution (pay attention to this detail).

Definition: Fisher Information Matrix

Fθ = E
y∼pθ(y|x)
x∼pdata

[∇θ log pθ(y|x)∇θ log pθ(y|x)ᵀ]

Where Fθ ∈ Rn×n.

We often approximate it using input samples (y is still
from model’s predictive distribution), as we don’t have access to pdata:

Fθ = 1
N

N∑
i=1
∇θ log pθ(y|xi)∇θ log pθ(y|xi)ᵀ

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)
The Fisher Information Matrix is the covariance of the score function
(gradients of the log-likelihood function) with expectation over the model’s

predictive distribution (pay attention to this detail).

Definition: Fisher Information Matrix

Fθ = E
y∼pθ(y|x)
x∼pdata

[∇θ log pθ(y|x)∇θ log pθ(y|x)ᵀ]

Where Fθ ∈ Rn×n. We often approximate it using input samples (y is still
from model’s predictive distribution), as we don’t have access to pdata:

Fθ = 1
N

N∑
i=1
∇θ log pθ(y|xi)∇θ log pθ(y|xi)ᵀ

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 5683.243

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 3488.456

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 1842.365

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 744.971

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 196.274

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 196.274

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 744.971

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 1842.365

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 3488.456

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kullback-Leibler divergence

−20 −15 −10 −5 0 5 10 15 20

KL[P ‖Q] = 5683.243

P

Q

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)

I We can parametrize the same distribution family on many di�erent
ways;

I Moving in the parameter space using the Euclidean distance as a
metric makes us tied to the particular parametrization;

I One interesting way is to move on the distribution space, to which
the KL divergence makes more sense;

I It turns out that the second-order Taylor approximation to the KL
divergence is the Fisher Information Matrix16;

I We won’t be talking here, but the Fisher has a strong connection to
the Hessian and the Generalized Gauss-Newton (GGN), please refer
to 17 if you are interested.

16For a full derivation please refer to: Ratli�, N. (2013). Information Geometry and
Natural Gradients.

17Martens, “New insights and perspectives on the natural gradient method”, 2014

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)

I We can parametrize the same distribution family on many di�erent
ways;

I Moving in the parameter space using the Euclidean distance as a
metric makes us tied to the particular parametrization;

I One interesting way is to move on the distribution space, to which
the KL divergence makes more sense;

I It turns out that the second-order Taylor approximation to the KL
divergence is the Fisher Information Matrix16;

I We won’t be talking here, but the Fisher has a strong connection to
the Hessian and the Generalized Gauss-Newton (GGN), please refer
to 17 if you are interested.

16For a full derivation please refer to: Ratli�, N. (2013). Information Geometry and
Natural Gradients.

17Martens, “New insights and perspectives on the natural gradient method”, 2014

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)

I We can parametrize the same distribution family on many di�erent
ways;

I Moving in the parameter space using the Euclidean distance as a
metric makes us tied to the particular parametrization;

I One interesting way is to move on the distribution space, to which
the KL divergence makes more sense;

I It turns out that the second-order Taylor approximation to the KL
divergence is the Fisher Information Matrix16;

I We won’t be talking here, but the Fisher has a strong connection to
the Hessian and the Generalized Gauss-Newton (GGN), please refer
to 17 if you are interested.

16For a full derivation please refer to: Ratli�, N. (2013). Information Geometry and
Natural Gradients.

17Martens, “New insights and perspectives on the natural gradient method”, 2014

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher InformationMatrix (FIM)

I We can parametrize the same distribution family on many di�erent
ways;

I Moving in the parameter space using the Euclidean distance as a
metric makes us tied to the particular parametrization;

I One interesting way is to move on the distribution space, to which
the KL divergence makes more sense;

I It turns out that the second-order Taylor approximation to the KL
divergence is the Fisher Information Matrix16;

I We won’t be talking here, but the Fisher has a strong connection to
the Hessian and the Generalized Gauss-Newton (GGN), please refer
to 17 if you are interested.

16For a full derivation please refer to: Ratli�, N. (2013). Information Geometry and
Natural Gradients.

17Martens, “New insights and perspectives on the natural gradient method”, 2014

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Section IV

; Natural Gradient <

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;
I It moves on the distribution space manifold, invariant with respect to

all di�erentiable and invertible transformations 19;
I Given that the FIM is the result of an outer-product, it is always PSD

(positive semide�nite matrix);
I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;

I It moves on the distribution space manifold, invariant with respect to
all di�erentiable and invertible transformations 19;

I Given that the FIM is the result of an outer-product, it is always PSD
(positive semide�nite matrix);

I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;
I It moves on the distribution space manifold, invariant with respect to

all di�erentiable and invertible transformations 19;

I Given that the FIM is the result of an outer-product, it is always PSD
(positive semide�nite matrix);

I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;
I It moves on the distribution space manifold, invariant with respect to

all di�erentiable and invertible transformations 19;
I Given that the FIM is the result of an outer-product, it is always PSD

(positive semide�nite matrix);

I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
When we do a preconditioning on Gradient descent using the Fisher, we
have the Natural Gradient Descent 18:

θ(t+1) = θ(t) − ηF−1
θ︸︷︷︸

FIM

∇L(θ(t))︸ ︷︷ ︸
Gradients

I It converges much faster than ordinary Gradient descent;
I It moves on the distribution space manifold, invariant with respect to

all di�erentiable and invertible transformations 19;
I Given that the FIM is the result of an outer-product, it is always PSD

(positive semide�nite matrix);
I It is still a n× nmatrix, that needs to be inverted;

18Amari, “Natural Gradient Works Efficiently in Learning”, 1998
19Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;

I In a Riemannian space, the shortest path between two points
(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;
I In a Riemannian space, the shortest path between two points

(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;
I In a Riemannian space, the shortest path between two points

(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;
I In a Riemannian space, the shortest path between two points

(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Natural Gradient
The natural gradient is connected to information geometry

20.
I In a Euclidean space, the shortest path between two points is always

the straight line;
I In a Riemannian space, the shortest path between two points

(minimal geodesic) can have a curvature and sometimes there is more
than one between two points;

I The metric tensor represents this curvature and can be di�erent at
di�erent points;

I With the natural gradient, we are moving in this Riemannian
manifold using the Fisher as the metric tensor;

I Parameters move more quickly along directions that have a small
impact on the decision function, and more cautiously along directions
that have a large impact 21;

20Amari, “Information geometry and its applications”, 2016
21Léon Bottou, Curtis, and Nocedal, Optimization methods for large-scale machine learning, 2018

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Riemannian manifold

Source: Gallier J., (2020) Advanced Geometric

Methods in Computer Science. CIS 610, Spring 2018.

I A manifold is a collection of
points, where locally (but not
globally), is Euclidean;

I A metric induces an inner
product on the tangent space at
each point on the manifold;

I The metric on the statistical
manifold is unique, it is an
intrinsic geometry;

I In Euclidean space we don’t
care because the metric is
constant everywhere;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Riemannian manifold

Source: Gallier J., (2020) Advanced Geometric

Methods in Computer Science. CIS 610, Spring 2018.

I A manifold is a collection of
points, where locally (but not
globally), is Euclidean;

I A metric induces an inner
product on the tangent space at
each point on the manifold;

I The metric on the statistical
manifold is unique, it is an
intrinsic geometry;

I In Euclidean space we don’t
care because the metric is
constant everywhere;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Riemannian manifold

Source: Gallier J., (2020) Advanced Geometric

Methods in Computer Science. CIS 610, Spring 2018.

I A manifold is a collection of
points, where locally (but not
globally), is Euclidean;

I A metric induces an inner
product on the tangent space at
each point on the manifold;

I The metric on the statistical
manifold is unique, it is an
intrinsic geometry;

I In Euclidean space we don’t
care because the metric is
constant everywhere;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Riemannian manifold

Source: Gallier J., (2020) Advanced Geometric

Methods in Computer Science. CIS 610, Spring 2018.

I A manifold is a collection of
points, where locally (but not
globally), is Euclidean;

I A metric induces an inner
product on the tangent space at
each point on the manifold;

I The metric on the statistical
manifold is unique, it is an
intrinsic geometry;

I In Euclidean space we don’t
care because the metric is
constant everywhere;

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical Fisher
There is a lot of confusion22 about the Fisher Information Matrix 23.

I In some scenarios you will see people sampling y ∼ pdata too instead
of sampling from the model’s predictive distribution y ∼ pθ(y|x);

I This is called the Empirical Fisher, Empirical FIM or just EF:

F̃θ = 1
N

N∑
i=1
∇θ log pθ(yi|xi)∇θ log pθ(yi|xi)ᵀ

I It turns out that Adam is using the Empirical Fisher, and to make
things more confusing it is using the square root of it.

22I blame evil people who omit expectation quali�ers about where y is coming from.
23Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical Fisher
There is a lot of confusion22 about the Fisher Information Matrix 23.

I In some scenarios you will see people sampling y ∼ pdata too instead
of sampling from the model’s predictive distribution y ∼ pθ(y|x);

I This is called the Empirical Fisher, Empirical FIM or just EF:

F̃θ = 1
N

N∑
i=1
∇θ log pθ(yi|xi)∇θ log pθ(yi|xi)ᵀ

I It turns out that Adam is using the Empirical Fisher, and to make
things more confusing it is using the square root of it.

22I blame evil people who omit expectation quali�ers about where y is coming from.
23Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical Fisher
There is a lot of confusion22 about the Fisher Information Matrix 23.

I In some scenarios you will see people sampling y ∼ pdata too instead
of sampling from the model’s predictive distribution y ∼ pθ(y|x);

I This is called the Empirical Fisher, Empirical FIM or just EF:

F̃θ = 1
N

N∑
i=1
∇θ log pθ(yi|xi)∇θ log pθ(yi|xi)ᵀ

I It turns out that Adam is using the Empirical Fisher, and to make
things more confusing it is using the square root of it.

22I blame evil people who omit expectation quali�ers about where y is coming from.
23Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Adam and theNatural Gradient Descent
Original Adam paper 24 claims that Adam is an approximation to the
natural gradient descent (diagonal of the FIM):

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, the approximation is only valid near optimality (why ?). The
exponent is also di�erent, since Adam is taking square root, it doesn’t
change direction of the descent (only stepsize) 25.

24Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015
25Staib et al., “Escaping saddle points with adaptive gradient methods”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Adam and theNatural Gradient Descent
Original Adam paper 24 claims that Adam is an approximation to the
natural gradient descent (diagonal of the FIM):

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt

vt ← β2 · vt−1 + (1− β2) · g2
t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, the approximation is only valid near optimality (why ?). The
exponent is also di�erent, since Adam is taking square root, it doesn’t
change direction of the descent (only stepsize) 25.

24Kingma and Ba, “Adam: a Method for Stochastic Optimization”, 2015
25Staib et al., “Escaping saddle points with adaptive gradient methods”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical Fisher

Dataset

y = θx+ b

GD NGD EF

Source: Kunstner, F., Balles, L., & Hennig, P. Limitations of the Empirical Fisher Approximation for

Natural Gradient Descent. 2019. https:// arxiv.org/ abs/ 1905.12558.

I Vector �elds of the gradients conditioned using the FIM vs using the
EF are very di�erent;

I Are they close to each other close to the minima ?

https://arxiv.org/abs/1905.12558

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Empirical Fisher
D

a
ta

se
t

Correct Misspecified (A) Misspecified (B)

Q
u

a
d

ra
ti

c
a
p

p
ro

x
im

a
ti

o
n

Loss contour Fisher emp. Fisher Minimum

Source: Kunstner, F., Balles, L., & Hennig, P. Limitations of the Empirical Fisher Approximation for

Natural Gradient Descent. 2019. https:// arxiv.org/ abs/ 1905.12558.

I EF is a good approximation of the Fisher at the minimum if model is
well-speci�ed. Otherwise, even at the minimum and with a large amount of
samples, it can be a very poor approximation 26;

I Is EF just the non-central gradient covariance matrix, working as variance
reduction instead of curvature adaptation ?

26Kunstner, Balles, and Hennig, “Limitations of the empirical fisher approximation for natural

gradient descent”, 2019

https://arxiv.org/abs/1905.12558

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The epsilon that might not be an epsilon
Many implementations use the epsilon to avoid division by zero:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, remember about the damping mechanism ? The ε can be seen as
setting a trust region radius 27.

27Choi et al., On empirical comparisons of optimizers for deep learning, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

The epsilon that might not be an epsilon
Many implementations use the epsilon to avoid division by zero:

gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2

t

θt ← θt−1 − α ·
m̂t√
v̂t + ε

However, remember about the damping mechanism ? The ε can be seen as
setting a trust region radius 27.

27Choi et al., On empirical comparisons of optimizers for deep learning, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher is a big Fisher
Computing the inverse of the diagonal Fisher is easy, but computing the
inverse of the “full” Fisher F−1 and the natural gradient F−1

θ ∇L(θ(t)), on
networks with millions of parameters, is just intractable.

I What about other structural approximations ? We don’t want to lose
all of the o�-diagonal structure;

I However, there are certain goals that we should be ideally try to
achieve: memory (remember we have F ∈ Rn×n) and computation
(we want to have an e�cient F−1);

I That is what Kronecker-Factored Approximate Curvature
(K-FAC) 28 proposes, an structured approximation to natural gradient
descent;

28Martens and Grosse, “Optimizing neural networks with Kronecker-factored approximate

curvature”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher is a big Fisher
Computing the inverse of the diagonal Fisher is easy, but computing the
inverse of the “full” Fisher F−1 and the natural gradient F−1

θ ∇L(θ(t)), on
networks with millions of parameters, is just intractable.

I What about other structural approximations ? We don’t want to lose
all of the o�-diagonal structure;

I However, there are certain goals that we should be ideally try to
achieve: memory (remember we have F ∈ Rn×n) and computation
(we want to have an e�cient F−1);

I That is what Kronecker-Factored Approximate Curvature
(K-FAC) 28 proposes, an structured approximation to natural gradient
descent;

28Martens and Grosse, “Optimizing neural networks with Kronecker-factored approximate

curvature”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher is a big Fisher
Computing the inverse of the diagonal Fisher is easy, but computing the
inverse of the “full” Fisher F−1 and the natural gradient F−1

θ ∇L(θ(t)), on
networks with millions of parameters, is just intractable.

I What about other structural approximations ? We don’t want to lose
all of the o�-diagonal structure;

I However, there are certain goals that we should be ideally try to
achieve: memory (remember we have F ∈ Rn×n) and computation
(we want to have an e�cient F−1);

I That is what Kronecker-Factored Approximate Curvature
(K-FAC) 28 proposes, an structured approximation to natural gradient
descent;

28Martens and Grosse, “Optimizing neural networks with Kronecker-factored approximate

curvature”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher is a big Fisher
Computing the inverse of the diagonal Fisher is easy, but computing the
inverse of the “full” Fisher F−1 and the natural gradient F−1

θ ∇L(θ(t)), on
networks with millions of parameters, is just intractable.

I What about other structural approximations ? We don’t want to lose
all of the o�-diagonal structure;

I However, there are certain goals that we should be ideally try to
achieve: memory (remember we have F ∈ Rn×n) and computation
(we want to have an e�cient F−1);

I That is what Kronecker-Factored Approximate Curvature
(K-FAC) 28 proposes, an structured approximation to natural gradient
descent;

28Martens and Grosse, “Optimizing neural networks with Kronecker-factored approximate

curvature”, 2015

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kronecker product

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kronecker product

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kronecker product

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher approximation

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher approximation

Source: Kazuki Osawa. Introducing k-fac: A second-order optimization method for large-scale deep

learning, 2018.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Fisher approximation

Source: Osawa, K. et al. Understanding Approximate Fisher Information for Fast Convergence of

Natural Gradient Descent in Wide Neural Networks, 2020.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Kronecker Inversion
Kronecker product has a very interesting and critical property:

(A⊗B)−1 = A−1 ⊗B−1

This means that the inverse of the product is the same as the product of the
inverse of the operands. And this gives us a critical performance speed-up
because we just need to invert small factor matrices.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Backpack in PyTorch
If you want to play with K-FAC on PyTorch, you can try using Backpack 29:

from torch import nn
from backpack import backpack, extend
from backpack.extensions import KFAC
from backpack.utils.examples import load_one_batch_mnist
from backpack.utils import kroneckers

X, y = load_one_batch_mnist(batch_size=512)

model = nn.Sequential(
nn.Flatten(),
nn.Linear(784, 10)

)

lossfunc = nn.CrossEntropyLoss()

model = extend(model)
lossfunc = extend(lossfunc)

loss = lossfunc(model(X), y)

with backpack(KFAC(mc_samples=1)):
loss.backward()

named_params = dict(model.named_parameters())
layer_weights = named_params["1.weight"]
layer_weights.grad = [10, 784]

kfac_f1, kfac_f2 = layer_weights.kfac
kfac_f1 = [10, 10]
kfac_f2 = [784, 784]

mat = kroneckers.two_kfacs_to_mat(kfac_f1,
kfac_f2)

mat = [7840, 7840]

29Dangel, Kunstner, and Hennig, “BackPACK: Packing more into backprop”, 2019

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

KroneckerMatrices

0 2 4 6 8

0

2

4

6

8

⊗
0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

=

0 1000 2000 3000 4000 5000 6000 7000

0

1000

2000

3000

4000

5000

6000

7000

A ∈ R10×10 B ∈ R784×784 G̃(θ) ∈ R7840×7840

Note that the colormap of the G̃(θ) was changed for visualization
purposes.

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Some empirical results

Source: Johnson, M. et al. K-FAC and Natural Gradients, 2017.

https:// supercomputersfordl2017.github.io/ Presentations/ K-FAC.pdf .

https://supercomputersfordl2017.github.io/Presentations/K-FAC.pdf

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Section V

; Thoughts <

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Benchmarking optimizers

oneshot

 const.

oneshot

 cosine wr

oneshot

 cosine

oneshot

 trapez.

small
budget

 const.

small
budget

 cosine wr

small
budget

 cosine

small
budget

 trapez.

large
budget

 const.

large
budget

 cosine wr

large
budget

 cosine

large
budget

 trapez.

Tuning:

Schedule:

-2.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%
Re

la
tiv

e
im

pr
ov

em
en

t

Source: Schmidt, R. M., Schneider, F., & Hennig, P. (2020). Descending through a Crowded Valley –

Benchmarking Deep Learning Optimizers.

Lines in gray (—, smoothed by cubic splines for visual guidance only) show the relative improvement

for a certain tuning and schedule (compared to the one-shot tuning without schedule) for all 14
optimizers on all eight test problems. The median over all lines is plotted in orange (—) with the

shaded area indicating the area between the 25th and 75th percentile. 30

30Schmidt, Schneider, and Hennig, “Descending through a Crowded Valley – Benchmarking Deep

Learning Optimizers”, 2020

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?
I What are properties of the di�erent solutions that di�erent

optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?
I What are properties of the di�erent solutions that di�erent

optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?

I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?
I What are properties of the di�erent solutions that di�erent

optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?

I What are the barriers to the use of second-order or approximately
second-order methods ? Are we going to see more software support ?

I Are we driving towards more hyper-parameters or more robust
methods ?

I What are properties of the di�erent solutions that di�erent
optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?

I Are we driving towards more hyper-parameters or more robust
methods ?

I What are properties of the di�erent solutions that di�erent
optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?

I What are properties of the di�erent solutions that di�erent
optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

To think

I Do we really need normalization techniques (i.e. Batch
Normalization) if we can come up with optimization methods that
embed invariant properties ?

I What are the other di�cult problems we can optimize with better
optimization algorithms ?

I What other approximations can we achieve ?
I What is empirical Fisher actually doing ?
I What are the barriers to the use of second-order or approximately

second-order methods ? Are we going to see more software support ?
I Are we driving towards more hyper-parameters or more robust

methods ?
I What are properties of the di�erent solutions that di�erent

optimization methods can achieve ?

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

Q&A

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

References I
Amari, Shun Ichi (Feb. 1998). “Natural Gradient Works E�ciently in Learning”. In: Neural

Computation 10.2, pp. 251–276. issn: 08997667. doi: 10.1162/089976698300017746. url:
https://www.mitpressjournals.org/doi/abs/10.1162/089976698300017746.

— (2016). “Information geometry and its applications”. In: Applied Mathematical Sciences

(Switzerland). Vol. 194. Springer, pp. i–374. doi: 10.1007/978-4-431-55978-8.

Bengio, Yoshua (2012). “Practical recommendations for gradient-based training of deep
architectures”. In: Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 7700 LECTU, pp. 437–478. issn:
03029743. doi: 10.1007/978-3-642-35289-8-26. arXiv: 1206.5533. url:
https://arxiv.org/pdf/1206.5533.pdf .

Bottou, Léon, Frank E Curtis, and Jorge Nocedal (2018). Optimization methods for large-scale

machine learning. doi: 10.1137/16M1080173. arXiv: 1606.04838.

Choi, Dami et al. (Oct. 2019). On empirical comparisons of optimizers for deep learning. arXiv:
1910.05446. url: http://arxiv.org/abs/1910.05446.

Dangel, Felix, Frederik Kunstner, and Philipp Hennig (2019). “BackPACK: Packing more into
backprop”. In: ICLR, pp. 1–22. arXiv: 1912.10985. url: http://arxiv.org/abs/1912.10985.

https://doi.org/10.1162/089976698300017746
https://www.mitpressjournals.org/doi/abs/10.1162/089976698300017746
https://doi.org/10.1007/978-4-431-55978-8
https://doi.org/10.1007/978-3-642-35289-8-26
https://arxiv.org/abs/1206.5533
https://arxiv.org/pdf/1206.5533.pdf
https://doi.org/10.1137/16M1080173
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1910.05446
https://arxiv.org/abs/1912.10985
http://arxiv.org/abs/1912.10985

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

References II
Dauphin, Yann N et al. (2014). “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization”. In: Advances in Neural Information Processing

Systems. Vol. 4. January, pp. 2933–2941. arXiv: 1406.2572.

Johnson, Matt et al. (2017). “K-FAC and Natural Gradients”. In: url:
https://supercomputersfordl2017.github.io/Presentations/K-FAC.pdf .

Karakida, Ryo and Kazuki Osawa (Oct. 2020). “Understanding Approximate Fisher
Information for Fast Convergence of Natural Gradient Descent in Wide Neural Networks”. In:
arXiv: 2010.00879. url: http://arxiv.org/abs/2010.00879.

Kingma, Diederik P. and Jimmy Lei Ba (2015). “Adam: a Method for Stochastic Optimization”.
In: International Conference on Learning Representations 2015, pp. 1–15. issn: 09252312. doi:
http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503. arXiv: 1412.6980v9.

Kunstner, Frederik, Lukas Balles, and Philipp Hennig (2019). “Limitations of the empirical
�sher approximation for natural gradient descent”. In: Advances in Neural Information

Processing Systems. Vol. 32. arXiv: 1905.12558.

Lê, Hông Vân (June 2017). “The uniqueness of the Fisher metric as information metric”. In:
Annals of the Institute of Statistical Mathematics 69.4, pp. 879–896. issn: 15729052. doi:
10.1007/s10463-016-0562-0. arXiv: 1306.1465. url: http://arxiv.org/abs/1306.1465.

Martens, James (2010). Deep learning via Hessian-free optimization. Tech. rep.

https://arxiv.org/abs/1406.2572
https://supercomputersfordl2017.github.io/Presentations/K-FAC.pdf
https://arxiv.org/abs/2010.00879
http://arxiv.org/abs/2010.00879
https://doi.org/http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1905.12558
https://doi.org/10.1007/s10463-016-0562-0
https://arxiv.org/abs/1306.1465
http://arxiv.org/abs/1306.1465

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

References III
Martens, James (2014). “New insights and perspectives on the natural gradient method”. In:
Journal of Machine Learning Research 21, pp. 1–76. issn: 15337928. arXiv: 1412.1193. url:
http://arxiv.org/abs/1412.1193.

Martens, James and Roger Grosse (2015). “Optimizing neural networks with
Kronecker-factored approximate curvature”. In: 32nd International Conference on Machine

Learning, ICML 2015. Vol. 3, pp. 2398–2407. isbn: 9781510810587. arXiv: 1503.05671.

Pascanu, Razvan and Yoshua Bengio (Jan. 2013). “Revisiting Natural Gradient for Deep
Networks”. In: 1st International Conference on Learning Representations, ICLR 2013 - Workshop

Track Proceedings. arXiv: 1301.3584. url: http://arxiv.org/abs/1301.3584.

Ratli�, Nathan (2013). “Information Geometry and Natural Gradients”. In: pp. 1–8. url:
http://www.nathanratli�.com/pedagogy/mathematics-for-intelligent-
systems/mathematics%7B%5C_%7Dfor%7B%5C_%7Dintelligent%7B%5C_%7Dsystems%7B%
5C_%7Dlecture12%7B%5C_%7Dnotes%7B%5C_%7DI.pdf?attredirects=0.

Robbins, Herbert and Sutton Monro (Sept. 1951). “A Stochastic Approximation Method”. In:
The Annals of Mathematical Statistics 22.3, pp. 400–407. issn: 0003-4851. doi:
10.1214/aoms/1177729586. url: https://projecteuclid.org/euclid.aoms/1177729586.

Sagun, Levent, Leon Bottou, and Yann LeCun (2016). “Eigenvalues of the Hessian in Deep
Learning: Singularity and Beyond”. In: arXiv: 1611.07476. url: http://arxiv.org/abs/1611.07476.

https://arxiv.org/abs/1412.1193
http://arxiv.org/abs/1412.1193
https://arxiv.org/abs/1503.05671
https://arxiv.org/abs/1301.3584
http://arxiv.org/abs/1301.3584
http://www.nathanratliff.com/pedagogy/mathematics-for-intelligent-systems/mathematics%7B%5C_%7Dfor%7B%5C_%7Dintelligent%7B%5C_%7Dsystems%7B%5C_%7Dlecture12%7B%5C_%7Dnotes%7B%5C_%7DI.pdf?attredirects=0
http://www.nathanratliff.com/pedagogy/mathematics-for-intelligent-systems/mathematics%7B%5C_%7Dfor%7B%5C_%7Dintelligent%7B%5C_%7Dsystems%7B%5C_%7Dlecture12%7B%5C_%7Dnotes%7B%5C_%7DI.pdf?attredirects=0
http://www.nathanratliff.com/pedagogy/mathematics-for-intelligent-systems/mathematics%7B%5C_%7Dfor%7B%5C_%7Dintelligent%7B%5C_%7Dsystems%7B%5C_%7Dlecture12%7B%5C_%7Dnotes%7B%5C_%7DI.pdf?attredirects=0
https://doi.org/10.1214/aoms/1177729586
https://projecteuclid.org/euclid.aoms/1177729586
https://arxiv.org/abs/1611.07476
http://arxiv.org/abs/1611.07476

Introduction Gradient Descent Adaptation and Preconditioning Natural Gradient Thoughts

References IV
Schmidt, Robin M, Frank Schneider, and Philipp Hennig (2020). “Descending through a
Crowded Valley – Benchmarking Deep Learning Optimizers”. In: arXiv: 2007.01547. url: https:
//github.com/SirRob1997/Crowded-Valley---Results%20http://arxiv.org/abs/2007.01547.

Staib, Matthew et al. (2019). “Escaping saddle points with adaptive gradient methods”. In: 36th

International Conference on Machine Learning, ICML 2019. Vol. 2019-June, pp. 10420–10454.
isbn: 9781510886988. arXiv: 1901.09149.

Thomas, Valentin et al. (2019). “On the interplay between noise and curvature and its e�ect on
optimization and generalization”. In: arXiv: 1906.07774. url: http://arxiv.org/abs/1906.07774.

Truong, Tuyen Trung et al. (June 2020). “A modi�cation of quasi-Newton’s methods helping
to avoid saddle points”. In: arXiv: 2006.01512. url: http://arxiv.org/abs/2006.01512.

Watt, Jeremy, Reza Borhani, and Aggelos Katsaggelos (Jan. 2020). Machine Learning Refined.
Cambridge University Press. isbn: 9781108690935. doi: 10.1017/9781108690935. url:
https://www.cambridge.org/core/product/identi�er/9781108690935/type/book.

Yao, Zhewei et al. (Dec. 2019). PYHESSIAN: Neural networks through the lens of the hessian.
arXiv: 1912.07145. url: http://arxiv.org/abs/1912.07145.

https://arxiv.org/abs/2007.01547
https://github.com/SirRob1997/Crowded-Valley---Results%20http://arxiv.org/abs/2007.01547
https://github.com/SirRob1997/Crowded-Valley---Results%20http://arxiv.org/abs/2007.01547
https://arxiv.org/abs/1901.09149
https://arxiv.org/abs/1906.07774
http://arxiv.org/abs/1906.07774
https://arxiv.org/abs/2006.01512
http://arxiv.org/abs/2006.01512
https://doi.org/10.1017/9781108690935
https://www.cambridge.org/core/product/identifier/9781108690935/type/book
https://arxiv.org/abs/1912.07145
http://arxiv.org/abs/1912.07145

	Introduction
	Motivation
	Probability framework
	Taylor approximation

	Gradient Descent
	Gradient Descent
	Momentum
	Stochastic Gradient Descent

	Adaptation and Preconditioning
	Adam
	Hessian
	Preconditioning
	Fisher Information Matrix

	Natural Gradient
	Natural Gradient
	Riemannian manifold
	Empirical Fisher
	K-FAC

	Thoughts

