Category Archives: c

JIT native code generation for TensorFlow computation graphs using Python and LLVM

Update: Hacker News discussion here.

The TensorFlow Computation Graph

tensorlogo

One of the most amazing components of the TensorFlow architecture is the computation graph that can be serialized using Protocol Buffers. This computation graph follows a well-defined format (click here for the proto files) and describes the computation that you specify (it can be a Deep Learning model like a CNN, a simple Logistic Regression or even any computation you want). For instance, here is an example of a very simple TensorFlow computation graph that we will use in this tutorial (using TensorFlow Python API):

import tensorflow as tf

with tf.Session() as sess:
    input_placeholder = tf.placeholder(tf.int32, 1, name="input")
    sub_op = tf.sub(input_placeholder, tf.constant(2, dtype=tf.int32))
    add_op = tf.add(sub_op, tf.constant(5, dtype=tf.int32))
    output = tf.add(add_op, tf.constant(100, dtype=tf.int32),
                    name="output")
    tf.train.write_graph(sess.graph_def, ".", "graph.pb", True)
Representation of the computation graph.
Representation of the computation graph.

As you can see, this is a very simple computation graph. First, we define the placeholder that will hold the input tensor and after that we specify the computation that should happen using this input tensor as input data. Here we can also see that we’re defining two important nodes of this graph, one is called “input” (the aforementioned placeholder) and the other is called “output“, that will hold the result of the final computation. This graph is the same as the following formula for a scalar: output = (((input - 2)-5)+100), where I intentionally added redundant operations to see LLVM constant propagation later.

In the last line of the code, we’re persisting this computation graph (including the constant values) into a serialized protobuf file. The final True parameter is to output a textual representation instead of binary, so it will produce the following human-readable output protobuf file (I omitted a part of it for brevity):

node {
  name: "input"
  op: "Placeholder"
  attr {
    key: "dtype"
    value {
      type: DT_INT32
    }
  }
  attr {
    key: "shape"
    value {
      shape {
        dim {
          size: 1
        }
      }
    }
  }
}
node {
  name: "Const"
  op: "Const"
  attr {
    key: "dtype"
    value {
      type: DT_INT32
    }
  }
  attr {
    key: "value"
    value {
      tensor {
        dtype: DT_INT32
        tensor_shape {
        }
        int_val: 2
      }
    }
  }
}

--- >(omitted for brevity) < ---

node {
  name: "output"
  op: "Add"
  input: "Add"
  input: "Const_2"
  attr {
    key: "T"
    value {
      type: DT_INT32
    }
  }
}
versions {
  producer: 9
}

This is a very simple graph, and TensorFlow graphs are actually never that simple, because TensorFlow models can easily contain more than 300 nodes depending on the model you’re specifying, specially for Deep Learning models.

We’ll use the above graph to show how we can JIT native code for this simple graph using LLVM framework.

The LLVM Frontend, IR and Backend

LLVM-Logo-Derivative-1

The LLVM framework is a really nice, modular and complete ecosystem for building compilers and toolchains. A very nice description of the LLVM architecture that is important for us is shown in the picture below:

LLVM Compiler Architecture
LLVM Compiler Architecture (AOSA/LLVM, Chris Lattner)

(The picture above is just a small part of the LLVM architecture, for a comprehensive description of it, please see the nice article from the AOSA book written by Chris Lattner)

Looking in the image above, we can see that LLVM provides a lot of core functionality, in the left side you see that many languages can write code for their respective language frontends, after that it doesn’t matter in which language you wrote your code, everything is transformed into a very powerful language called LLVM IR (LLVM Intermediate Representation) which is as you can imagine, a intermediate representation of the code just before the assembly code itself. In my opinion, the IR is the key component of what makes LLVM so amazing, because it doesn’t matter in which language you wrote your code (or even if it was a JIT’ed IR), everything ends in the same representation, and then here is where the magic happens, because the IR can take advantage of the LLVM optimizations (also known as transform and analysis passes).

After this IR generation, you can feed it into any LLVM backend to generate native code for any architecture supported by LLVM (such as x86, ARM, PPC, etc) and then you can finally execute your code with the native performance and also after LLVM optimization passes.

In order to JIT code using LLVM, all you need is to build the IR programmatically, create a execution engine to convert (during execution-time) the IR into native code, get a pointer for the function you have JIT’ed and then finally execute it. I’ll use here a Python binding for LLVM called llvmlite, which is very Pythonic and easy to use.

JIT’ing TensorFlow Graph using Python and LLVM

flow

Let’s now use the LLVM and Python to JIT the TensorFlow computational graph. This is by no means a comprehensive implementation, it is very simplistic approach, a oversimplification that assumes some things: a integer closure type, just some TensorFlow operations and also a single scalar support instead of high rank tensors.

So, let’s start building our JIT code; first of all, let’s import the required packages, initialize some LLVM sub-systems and also define the LLVM respective type for the TensorFlow integer type:

from ctypes import CFUNCTYPE, c_int

import tensorflow as tf
from google.protobuf import text_format
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import ops

import llvmlite.ir as ll
import llvmlite.binding as llvm

llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()

TYPE_TF_LLVM = {
    types_pb2.DT_INT32: ll.IntType(32),
}

After that, let’s define a class to open the TensorFlow exported graph and also declare a method to get a node of the graph by name:

class TFGraph(object):
    def __init__(self, filename="graph.pb", binary=False):
        self.graph_def = graph_pb2.GraphDef()
        with open("graph.pb", "rb") as f:
            if binary:
                self.graph_def.ParseFromString(f.read())
            else:
                text_format.Merge(f.read(), self.graph_def)

    def get_node(self, name):
        for node in self.graph_def.node:
            if node.name == name:
                return node

And let’s start by defining our main function that will be the starting point of the code:

def run_main():
    graph = TFGraph("graph.pb", False)
    input_node = graph.get_node("input")
    output_node = graph.get_node("output")

    input_type = TYPE_TF_LLVM[input_node.attr["dtype"].type]
    output_type = TYPE_TF_LLVM[output_node.attr["T"].type]

    module = ll.Module()
    func_type = ll.FunctionType(output_type, [input_type])
    func = ll.Function(module, func_type, name='tensorflow_graph')
    func.args[0].name = 'input'

    bb_entry = func.append_basic_block('entry')
    ir_builder = ll.IRBuilder(bb_entry)

As you can see in the code above, we open the serialized protobuf graph and then get the input and output nodes of this graph. After that we also map the type of the both graph nodes (input/output) to the LLVM type (from TensorFlow integer to LLVM integer). We start then by defining a LLVM Module, which is the top level container for all IR objects. One module in LLVM can contain many different functions, here we will create just one function that will represent the graph, this function will receive as input argument the input data of the same type of the input node and then it will return a value with the same type of the output node.

After that we start by creating the entry block of the function and using this block we instantiate our IR Builder, which is a object that will provide us the building blocks for JIT’ing operations of TensorFlow graph.

Let’s now define the function that will do the real work of converting TensorFlow nodes into LLVM IR:

def build_graph(ir_builder, graph, node):
    if node.op == "Add":
        left_op_node = graph.get_node(node.input[0])
        right_op_node = graph.get_node(node.input[1])
        left_op = build_graph(ir_builder, graph, left_op_node)
        right_op = build_graph(ir_builder, graph, right_op_node)
        return ir_builder.add(left_op, right_op)

    if node.op == "Sub":
        left_op_node = graph.get_node(node.input[0])
        right_op_node = graph.get_node(node.input[1])
        left_op = build_graph(ir_builder, graph, left_op_node)
        right_op = build_graph(ir_builder, graph, right_op_node)
        return ir_builder.sub(left_op, right_op)

    if node.op == "Placeholder":
        function_args = ir_builder.function.args
        for arg in function_args:
            if arg.name == node.name:
                return arg
        raise RuntimeError("Input [{}] not found !".format(node.name))

    if node.op == "Const":
        llvm_const_type = TYPE_TF_LLVM[node.attr["dtype"].type]
        const_value = node.attr["value"].tensor.int_val[0]
        llvm_const_value = llvm_const_type(const_value)
        return llvm_const_value

In this function, we receive by parameters the IR Builder, the graph class that we created earlier and the output node. This function will then recursively build the LLVM IR by means of the IR Builder. Here you can see that I only implemented the Add/Sub/Placeholder and Const operations from the TensorFlow graph, just to be able to support the graph that we defined earlier.

After that, we just need to define a function that will take a LLVM Module and then create a execution engine that will execute the LLVM optimization over the LLVM IR before doing the hard-work of converting the IR into native x86 code:

def create_engine(module):
    features = llvm.get_host_cpu_features().flatten()
    llvm_module = llvm.parse_assembly(str(module))
    target = llvm.Target.from_default_triple()
    target_machine = target.create_target_machine(opt=3, features=features)
    engine = llvm.create_mcjit_compiler(llvm_module, target_machine)
    engine.finalize_object()
    print target_machine.emit_assembly(llvm_module)
    return engine

In the code above, you can see that we first get the CPU features (SSE, etc) into a list, after that we parse the LLVM IR from the module and then we create a engine using maximum optimization level (opt=3, roughly equivalent to the GCC -O3 parameter), we’re also printing the assembly code (in my case, the x86 assembly built by LLVM).

And here we just finish our run_main() function:

ret = build_graph(ir_builder, graph, output_node)
ir_builder.ret(ret)

with open("output.ir", "w") as f:
    f.write(str(module))

engine = create_engine(module)

func_ptr = engine.get_function_address("tensorflow_graph")
cfunc = CFUNCTYPE(c_int, c_int)(func_ptr)
ret = cfunc(10)

print "Execution output: {}".format(ret)

As you can see in the code above, we just call the build_graph() method and then use the IR Builder to add the “ret” LLVM IR instruction (ret = return) to return the output of the IR function we just created based on the TensorFlow graph. We’re also here writing the IR output to a external file, I’ll use this LLVM IR file later to create native assembly for other different architectures such as ARM architecture. And finally, just get the native code function address, create a Python wrapper for this function and then call it with the argument “10”, which will be input data and then output the resulting output value.

And that is it, of course that this is just a oversimplification, but now we understand the advantages of having a JIT for our TensorFlow models.

The output LLVM IR, the advantage of optimizations and multiple architectures (ARM, PPC, x86, etc)

For instance, lets create the LLVM IR (using the code I shown above) of the following TensorFlow graph:

import tensorflow as tf

with tf.Session() as sess:
    input_placeholder = tf.placeholder(tf.int32, 1, name="input")
    sub_op = tf.sub(input_placeholder, tf.constant(2, dtype=tf.int32))
    add_op = tf.add(sub_op, tf.constant(5, dtype=tf.int32))
    output = tf.add(add_op, tf.constant(100, dtype=tf.int32),
                    name="output")
    tf.train.write_graph(sess.graph_def, ".", "graph.pb", True)

The LLVM IR generated is this one below:

; ModuleID = ""
target triple = "unknown-unknown-unknown"
target datalayout = ""

define i32 @"tensorflow_graph"(i32 %"input") 
{
entry:
  %".3" = sub i32 %"input", 2
  %".4" = add i32 %".3", 5
  %".5" = add i32 %".4", 100
  ret i32 %".5"
}

As you can see, the LLVM IR looks a lot like an assembly code, but this is not the final assembly code, this is just a non-optimized IR yet. Just before generating the x86 assembly code, LLVM runs a lot of optimization passes over the LLVM IR, and it will do things such as dead code elimination, constant propagation, etc. And here is the final native x86 assembly code that LLVM generates for the above LLVM IR of the TensorFlow graph:

    .text
    .file	"<string>"
    .globl	tensorflow_graph
    .align	16, 0x90
    .type	tensorflow_graph,@function
tensorflow_graph:
    .cfi_startproc
    leal	103(%rdi), %eax
    retq
.Lfunc_end0:
    .size	tensorflow_graph, .Lfunc_end0-tensorflow_graph
    .cfi_endproc

    .section	".note.GNU-stack","",@progbits

As you can see, the optimized code removed a lot of redundant operations, and ended up just doing a add operation of 103, which is the correct simplification of the computation that we defined in the graph. For large graphs, you can see that these optimizations can be really powerful, because we are reusing the compiler optimizations that were developed for years in our Machine Learning model computation.

You can also use a LLVM tool called “llc”, that can take an LLVM IR file and the generate assembly for any other platform you want, for instance, the command-line below will generate native code for ARM architecture:

llc -O3 out.ll -march=arm -o sample.s

The output sample.s file is the one below:

    .text
    .syntax unified
    .eabi_attribute	67, "2.09"	@ Tag_conformance
    .eabi_attribute	6, 1	@ Tag_CPU_arch
    .eabi_attribute	8, 1	@ Tag_ARM_ISA_use
    .eabi_attribute	17, 1	@ Tag_ABI_PCS_GOT_use
    .eabi_attribute	20, 1	@ Tag_ABI_FP_denormal
    .eabi_attribute	21, 1	@ Tag_ABI_FP_exceptions
    .eabi_attribute	23, 3	@ Tag_ABI_FP_number_model
    .eabi_attribute	34, 1	@ Tag_CPU_unaligned_access
    .eabi_attribute	24, 1	@ Tag_ABI_align_needed
    .eabi_attribute	25, 1	@ Tag_ABI_align_preserved
    .eabi_attribute	38, 1	@ Tag_ABI_FP_16bit_format
    .eabi_attribute	14, 0	@ Tag_ABI_PCS_R9_use
    .file	"out.ll"
    .globl	tensorflow_graph
    .align	2
    .type	tensorflow_graph,%function
tensorflow_graph:                       @ @tensorflow_graph
    .fnstart
@ BB#0:                                 @ %entry
    add	r0, r0, #103
    mov	pc, lr
.Lfunc_end0:
    .size	tensorflow_graph, .Lfunc_end0-tensorflow_graph
    .fnend

    .section	".note.GNU-stack","",%progbits

As you can see above, the ARM assembly code is also just a “add” assembly instruction followed by a return instruction.

This is really nice because we can take natural advantage of the LLVM framework. For instance, today ARM just announced the ARMv8-A with Scalable Vector Extensions (SVE) that will support 2048-bit vectors, and they are already working on patches for LLVM. In future, a really nice addition to LLVM would be the development of LLVM Passes for analysis and transformation that would take into consideration the nature of Machine Learning models.

And that’s it, I hope you liked the post ! Is really awesome what you can do with a few lines of Python, LLVM and TensorFlow.

Update 22 Aug 2016: Josh Klontz just pointed his cool project called Likely on Hacker News discussion.

Update 22 Aug 2016: TensorFlow team is actually working on a JIT (I don’t know if they are using LLVM, but it seems the most reasonable way to go in my opinion). In their paper, there is also a very important statement regarding Future Work that I cite here:

“We also have a number of concrete directions to improve the performance of TensorFlow. One such direction is our initial work on a just-in-time compiler that can take a subgraph of a TensorFlow execution, perhaps with some runtime profiling information about the typical sizes and shapes of tensors, and can generate an optimized routine for this subgraph. This compiler will understand the semantics of perform a number of optimizations such as loop fusion, blocking and tiling for locality, specialization for particular shapes and sizes, etc.” – TensorFlow White Paper

Full code

from ctypes import CFUNCTYPE, c_int

import tensorflow as tf
from google.protobuf import text_format
from tensorflow.core.framework import graph_pb2
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import ops

import llvmlite.ir as ll
import llvmlite.binding as llvm

llvm.initialize()
llvm.initialize_native_target()
llvm.initialize_native_asmprinter()

TYPE_TF_LLVM = {
    types_pb2.DT_INT32: ll.IntType(32),
}


class TFGraph(object):
    def __init__(self, filename="graph.pb", binary=False):
        self.graph_def = graph_pb2.GraphDef()
        with open("graph.pb", "rb") as f:
            if binary:
                self.graph_def.ParseFromString(f.read())
            else:
                text_format.Merge(f.read(), self.graph_def)

    def get_node(self, name):
        for node in self.graph_def.node:
            if node.name == name:
                return node


def build_graph(ir_builder, graph, node):
    if node.op == "Add":
        left_op_node = graph.get_node(node.input[0])
        right_op_node = graph.get_node(node.input[1])
        left_op = build_graph(ir_builder, graph, left_op_node)
        right_op = build_graph(ir_builder, graph, right_op_node)
        return ir_builder.add(left_op, right_op)

    if node.op == "Sub":
        left_op_node = graph.get_node(node.input[0])
        right_op_node = graph.get_node(node.input[1])
        left_op = build_graph(ir_builder, graph, left_op_node)
        right_op = build_graph(ir_builder, graph, right_op_node)
        return ir_builder.sub(left_op, right_op)

    if node.op == "Placeholder":
        function_args = ir_builder.function.args
        for arg in function_args:
            if arg.name == node.name:
                return arg
        raise RuntimeError("Input [{}] not found !".format(node.name))

    if node.op == "Const":
        llvm_const_type = TYPE_TF_LLVM[node.attr["dtype"].type]
        const_value = node.attr["value"].tensor.int_val[0]
        llvm_const_value = llvm_const_type(const_value)
        return llvm_const_value


def create_engine(module):
    features = llvm.get_host_cpu_features().flatten()
    llvm_module = llvm.parse_assembly(str(module))
    target = llvm.Target.from_default_triple()
    target_machine = target.create_target_machine(opt=3, features=features)
    engine = llvm.create_mcjit_compiler(llvm_module, target_machine)
    engine.finalize_object()
    print target_machine.emit_assembly(llvm_module)
    return engine


def run_main():
    graph = TFGraph("graph.pb", False)
    input_node = graph.get_node("input")
    output_node = graph.get_node("output")

    input_type = TYPE_TF_LLVM[input_node.attr["dtype"].type]
    output_type = TYPE_TF_LLVM[output_node.attr["T"].type]

    module = ll.Module()
    func_type = ll.FunctionType(output_type, [input_type])
    func = ll.Function(module, func_type, name='tensorflow_graph')
    func.args[0].name = 'input'

    bb_entry = func.append_basic_block('entry')
    ir_builder = ll.IRBuilder(bb_entry)

    ret = build_graph(ir_builder, graph, output_node)
    ir_builder.ret(ret)

    with open("output.ir", "w") as f:
        f.write(str(module))

    engine = create_engine(module)

    func_ptr = engine.get_function_address("tensorflow_graph")
    cfunc = CFUNCTYPE(c_int, c_int)(func_ptr)
    ret = cfunc(10)

    print "Execution output: {}".format(ret)


if __name__ == "__main__":
    run_main()

 

Hacking into Python objects internals

You know, Python represents every object using the low-level C API PyObject (or PyVarObject for variable-size objects) structure, so, concretely, you can cast any Python object pointer to this type; this inheritance is built by hand, every new object must have a leading macro called PyObject_HEAD which defines the PyObject header for the object. The PyObject structure is declared in Include/object.h as:

1
2
3
typedef struct _object {
    PyObject_HEAD
} PyObject;

and the PyObject_HEAD macro is defined as:

1
2
3
4
#define PyObject_HEAD                   \
    _PyObject_HEAD_EXTRA                \
    Py_ssize_t ob_refcnt;               \
    struct _typeobject *ob_type;

… with two fields (forget the _PyObject_HEAD_EXTRA, it’s only used for a tracing debug feature) called ob_refcnt and ob_type, representing the reference counting for the object and the type of the object. I know you can use sys.getrefcount to get the reference counting of an object, but hacking the object memory using ctypes is by far more powerful, since you can get the contents of any field of the object (in cases where you don’t have a native API for that), I’ll show more examples later, but lets focus on the reference counting field of the object.

Getting the reference count (ob_refcnt)

So, in Python, we have the built-in function id(), this function returns the identity of the object, but, looking at its definition on CPython implementation, you’ll notice that id() returns the memory address of the object, see the source in Python/bltinmodule.c:

1
2
3
4
5
static PyObject *
builtin_id(PyObject *self, PyObject *v)
{
    return PyLong_FromVoidPtr(v);
}

… the function PyLong_FromVoidPtr returns a Python long object from a void pointer. So, in CPython, this value is the address of the object in the memory as shown below:

1
2
3
>>> value = 666
>>> hex(id(value))
'0x8998e50' # memory address of the 'value' object

Now that we have the memory address of the object, we can use the Python ctypes module to get the reference counting by accessing the attribute ob_refcnt, here is the code needed to do that:

1
2
3
4
5
6
>>> value = 666
>>> value_address = id(value)
>>>
>>> ob_refcnt = ctypes.c_long.from_address(value_address)
>>> ob_refcnt
c_long(1)

What I’m doing here is getting the integer value from the ob_refcnt attribute of the PyObject in memory.  Let’s add a new reference for the object ‘value’ we created, and then check the reference count again:

1
2
3
4
5
>>> value_ref = value
>>> id(value_ref) == id(value)
True
>>> ob_refcnt
c_long(2)

Note that the reference counting was increased by 1 due to the new reference variable called ‘value_ref’.

Interned strings state (ob_sstate)

Now, getting the reference count wasn’t even funny, we already had the sys.getrefcount API for that, but what about the interned state of the strings ? In order to avoid the creation of different allocations for the same string (and to speed comparisons), Python uses a dictionary that works like a “cache” for strings, this dictionary is defined in Objects/stringobject.c:

1
2
3
4
5
6
7
8
9
/* This dictionary holds all interned strings.  Note that references to
strings in this dictionary are *not* counted in the string's ob_refcnt.
When the interned string reaches a refcnt of 0 the string deallocation
function will delete the reference from this dictionary.

Another way to look at this is that to say that the actual reference
count of a string is:  s-&gt;ob_refcnt + (s-&gt;ob_sstate?2:0)
*/

static PyObject *interned;

I also copied here the comment about the dictionary, because is interesting to note that the strings in the dictionary aren’t counted in the string’s ob_refcnt.

So, the interned state of a string object is hold in the attribute ob_sstate of the string object, let’s see the definition of the Python string object:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
typedef struct {
    PyObject_VAR_HEAD
    long ob_shash;
    int ob_sstate;
    char ob_sval[1];

    /* Invariants:
    *     ob_sval contains space for 'ob_size+1' elements.
    *     ob_sval[ob_size] == 0.
    *     ob_shash is the hash of the string or -1 if not computed yet.
    *     ob_sstate != 0 iff the string object is in stringobject.c's
    *       'interned' dictionary; in this case the two references
    *       from 'interned' to this object are *not counted* in ob_refcnt.
    */

} PyStringObject;

As you can note, strings objects inherit from the PyObject_VAR_HEAD macro, which defines another header attribute, let’s see the definition to get the complete idea of the structure:

1
2
3
#define PyObject_VAR_HEAD               \
    PyObject_HEAD                       \
    Py_ssize_t ob_size; /* Number of items in variable part */

The PyObject_VAR_HEAD macro adds another field called ob_size, which is the number of items on the variable part of the Python object (i.e. the number of items on a list object). So, before getting to the ob_sstate field, we need to shift our offset to skip the fields ob_refcnt (long), ob_type (void*) (from PyObject_HEAD), the field ob_size (long) (from PyObject_VAR_HEAD) and the field ob_shash (long) from the PyStringObject. Concretely, we need to skip this offset (3 fields with size long and one field with size void*) of bytes:

1
2
3
>>> ob_sstate_offset = ctypes.sizeof(ctypes.c_long)*3 + ctypes.sizeof(ctypes.c_voidp)
>>> ob_sstate_offset
16

Now, let’s prepare two cases, one that we know that isn’t interned and another that is surely interned, then we’ll force the interned state of the other non-interned string to check the result of the ob_sstate attribute:

1
2
3
4
5
6
7
8
>>> a = "lero"
>>> b = "".join(["l", "e", "r", "o"])
>>> ctypes.c_long.from_address(id(a) + ob_sstate_offset)
c_long(1)
>>> ctypes.c_long.from_address(id(b) + ob_sstate_offset)
c_long(0)
>>> ctypes.c_long.from_address(id(intern(b)) + ob_sstate_offset)
c_long(1)

Note that the interned state for the object “a” is 1 and for the object “b” is 0. After forcing the interned state of the variable “b”, we can see that the field ob_sstate has changed to 1.

Changing internal states (evil mode)

Now, let’s suppose we want to change some internal state of a Python object through the interpreter. Let’s try to change the value of an int object. Int objects are defined in Include/intobject.h:

1
2
3
4
typedef struct {
    PyObject_HEAD
    long ob_ival;
} PyIntObject;

As you can see, the internal value of an int is stored in the field ob_ival, to change it, we just need to skip the ob_refcnt (long) and the ob_type (void*) from the PyObject_HEAD:

1
2
3
4
5
6
7
8
>>> value = 666
>>> ob_ival_offset = ctypes.sizeof(ctypes.c_long) + ctypes.sizeof(ctypes.c_voidp)
>>> ob_ival = ctypes.c_int.from_address(id(value)+ob_ival_offset)
>>> ob_ival
c_long(666)
>>> ob_ival.value = 8
>>> value
8

And that is it, we have changed the value of the int value directly in the memory.

I hope you liked it, you can play with lots of other Python objects like lists and dicts, note that this method is just intended to show how the Python objects are structured in the memory and how you can change them using the native API, but obviously, you’re not supposed to use this to change the value of ints lol.

Update 11/29/11: you’re not supposed to do such things on your production code or something like that, in this post I’m doing lazy assumptions about arch details like sizes of primitives, etc. Be warned.

A method for JIT’ing algorithms and data structures with LLVM

llvm_dragon

Hello folks, I always post about Python and EvoComp (Pyevolve), but this time it’s about C, LLVM, search algorithms and data structures. This post describes the efforts to implement an idea: to JIT (verb) algorithms and the data structures used by them, together.

AVL Tree Intro

Here is a short intro to AVL Trees from Wikipedia:

In computer science, an AVL tree is a self-balancing binary search tree, and it is the first such data structure to be invented. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; therefore, it is also said to be height-balanced. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.

The problem and the idea

When we have a data structure and algorithms to handle (insert, remove and lookup) that structure, the native code of our algorithm is usually full of overhead; for example, in an AVL Tree (Balanced Binary Tree), the overhead appear in: checking if we really have a left or right node while traversing the nodes for lookups, accessing nodes inside nodes, etc. This overhead creates unnecessary assembly operations which in turn, creates native code overhead, even when the compiler optimize it. This overhead directly impacts on the performance of our algorithm (this traditional approach, of course, give us a very flexible structure and the complexity (not Big-O) is easy to handle, but we pay for it: performance loss).

Continue reading A method for JIT’ing algorithms and data structures with LLVM